Skip to main content Accessibility help
×
Hostname: page-component-76c49bb84f-hwk5l Total loading time: 0 Render date: 2025-07-14T01:15:54.810Z Has data issue: false hasContentIssue false

Quasiconvex Programming

Published online by Cambridge University Press:  27 June 2025

Jacob E. Goodman
Affiliation:
City College, City University of New York
Janos Pach
Affiliation:
City College, City University of New York and New York University
Emo Welzl
Affiliation:
Eidgenössische Technische Hochschule Zürich
Get access

Summary

We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.

1. Introduction

Quasiconvex programming is a form of geometric optimization, introduced in [Amenta et al. 1999] in the context of mesh improvement techniques and since applied to other problems in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics [Bern and Eppstein 2001; 2003; Chan 2004; Eppstein 2004]. If a problem can be formulated as a quasiconvex program of bounded dimension, it can be solved algorithmically in a linear number of constant-complexity primitive operations by generalized linear programming techniques, or numerically by generalized gradient descent techniques. In this paper we survey quasiconvex programming algorithms and applications.

1.1. Quasiconvex functions. Let Y be a totally ordered set, for instance the real numbers ℝ or integers ℤ ordered numerically. For any function f : X Y, and any value ƛ ∈ Y, we define the lower level set A function q : X Y, where X is a convex subset of Rd, is called quasiconvex [Dharmadhikari and Joag-Dev 1988] when its lower level sets are all convex.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×