Published online by Cambridge University Press: 05 May 2013
This book is the second in a three-volume series, the first of which is Theory of Matroids, and the third of which will be called Combinatorial Geometries: Advanced Theory. The three volumes together will constitute a fairly complete survey of the current knowledge of matroids and their closely related cousins, combinatorial geometries. As in the first volume, clear exposition of our subject has been one of our main goals, so that the series will be useful not only as a reference for specialists, but also as a textbook for graduate students and a first introduction to the subject for all who are interested in using matroid theory in their work.
This volume begins with three chapters on coordinatization or vector representation, by Fournier and White. They include a general chapter on ‘Coordinatizations,’ and two chapters on the important special cases of ‘Binary Matroids’ and ‘Unimodular Matroids’ (also known as regular matroids). These are followed by two chapters by Brualdi, titled ‘Introduction to Matching Theory’ and ‘Transversal Matroids,’ and a chapter on ‘Simplicial Matroids’ by Cordovil and Lindstrom. These six chapters, together with Oxley's ‘Graphs and Series-Parallel Networks’ from the first volume, constitute a survey of the major special types of matroids, namely, graphic matroids, vector matroids, transversal matroids, and simplicial matroids. We follow with two chapters on the important matroids invariants, ‘The Mobius Function and the Characteristic Polynomial’ by Zaslavsky and ‘Whitney Numbers’ by Aigner. We conclude with a chapter on the aspect of matroid theory that is primarily responsible for an explosion of interest in the subject in recent years, ‘Matroids in Combinatorial Optimization’ by Faigle.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.