Published online by Cambridge University Press: 29 May 2025
This survey is based on lectures given by the authors during the program “Non-commutative algebraic geometry and representation theory” at MSRI in the Spring 2013. It covers recent work by the authors on noncommutative motives and their applications, and is intended for a broad mathematical audience. In Section 1 we recall the main features of Grothendieck’s theory of motives. In Sections 2 and 3 we introduce several categories of noncommutative motives and describe their relation with the classical commutative counterparts. In Section 4 we formulate the noncommutative analogues of Grothendieck’s standard conjectures of type C and D, of Voevodsky’s smash-nilpotence conjecture, and of Kimura–O’Sullivan finite-dimensionality conjecture. Section 5 is devoted to recollections of the (super-)Tannakian formalism. In Section 6 we introduce the noncommutative motivic Galois (super-)groups and their unconditional versions. In Section 7 we explain how the classical theory of (intermediate) Jacobians can be extended to the noncommutative world. Finally, in Section 8 we present some applications to motivic decompositions and to Dubrovin’s conjecture.
We recall here the main features of Grothendieck’s classical theory of pure motives, which will be useful when passing to the noncommutative world. These facts are well-Let 𝓥 (k) be the category of smooth projective k-schemes. The category of pure motives is obtained from 𝓥 (k) known and we refer the reader to [André 2004; Jannsen et al. 1994; Manin 1968] for more detailed treatments. Let k be a base field and F a field of coefficients.by linearization, idempotent completion, and inversion of the Lefschetz motive.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.