Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-ms8jb Total loading time: 0 Render date: 2025-11-22T02:10:55.928Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  20 November 2025

Kenneth Aizawa
Affiliation:
Rutgers University, New Jersey

Summary

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NC
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC 4.0 https://creativecommons.org/cclicenses/

References

Aidley, D. J. (1998). The Physiology of Excitable Cells. Cambridge University Press.10.1017/CBO9781139171182CrossRefGoogle Scholar
Aizawa, K., & Gillett, C. (2019). Defending pluralism about compositional explanations. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 78.10.1016/j.shpsc.2019.101202CrossRefGoogle ScholarPubMed
Aizawa, K., & Headley, D. (forthcoming). Scientific Constitutive Abduction.Google Scholar
Aliseda, A. (2005). Abductive Reasoning (Vol. 330). Springer.Google Scholar
Anderson, D. R. (1986). The evolution of Peirce’s concept of abduction. Transactions of the Charles S. Peirce Society, 22(2), 145164.Google Scholar
Baker, A., Tang, Y., & Turner, M. (2003). Percentage decline in masters superathlete track and field performance with aging. Experimental Aging Research, 29(1), 4765.10.1080/03610730303706CrossRefGoogle ScholarPubMed
Barlow, H. B. (1953). Summation and inhibition in the frog’s retina. The Journal of Physiology, 119(1), 69.10.1113/jphysiol.1953.sp004829CrossRefGoogle ScholarPubMed
Barnes, E. (1995). Inference to the loveliest explanation. Synthese, 103(2), 251277.10.1007/BF01090049CrossRefGoogle Scholar
Baumgartner, G. (1960). Indirekte Grössenbestimmung der rezeptiven Felder der Retina beim Menschen mittels der Hermannschen Gittertäuschung [Indirect determination of the size of the receptive fields of the human retina using the Hermann grating illusion]. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere, 272(1), 2122.10.1007/BF00680926CrossRefGoogle Scholar
Baumgartner, M., & Casini, L. (2017). An abductive theory of constitution. Philosophy of Science, 84(2), 214233.10.1086/690716CrossRefGoogle Scholar
Baumgartner, M., & Gebharter, A. (2016). Constitutive relevance, mutual manipulability, and fat-handedness. The British Journal for the Philosophy of Science, 67(3), 731756.10.1093/bjps/axv003CrossRefGoogle Scholar
Bechtel, W. (2006). Discovering Cell Mechanisms: The Creation of Modern Cell Biology. Cambridge University Press.Google Scholar
Bechtel, W. (2008). Mental Mechanisms: Philosophical Perspectives on Cognitive Neuroscience. Lawrence Erlbaum.Google Scholar
Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421441.10.1016/j.shpsc.2005.03.010CrossRefGoogle ScholarPubMed
Bechtel, W., & Richardson, R. C. (2010). Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research. MIT Press.10.7551/mitpress/8328.001.0001CrossRefGoogle Scholar
Beebe, J. R. (2009). The abductivist reply to skepticism. Philosophy and Phenomenological Research, 79(3), 605636.10.1111/j.1933-1592.2009.00295.xCrossRefGoogle Scholar
Bellucci, F., & Pietarinen, A.-V. (2022). Peirce’s abduction. In Magnani, L. (Ed.), Handbook of Abductive Cognition (pp. 114). Springer International Publishing. https://doi.org/10.1007/978-3-030-68436-5_7-1Google Scholar
Bennett, K. (2017). Making Things Up. Oxford University Press.10.1093/oso/9780199682683.001.0001CrossRefGoogle Scholar
Betz, G. (2013). Revamping hypothetico-deductivism: A dialectic account of confirmation. Erkenntnis, 78(5), 9911009.10.1007/s10670-012-9406-3CrossRefGoogle Scholar
Bickle, J. (2023). Hodgkin’s and Huxley’s own assessments of their “quantitative description” of nerve membrane current. History and Philosophy of the Life Sciences, 45.10.1007/s40656-023-00582-7CrossRefGoogle ScholarPubMed
Bird, A. (2005). Abductive knowledge and Holmesian inference. In Gendler, T. S. & Hawthorne, J. (Eds.), Oxford Studies in Epistemology (Vol. 1, pp. 131). Oxford University Press.Google Scholar
Bird, A. (2020). Scientific realism and three problems for inference to the best explanation. In Gonzalez, W. (Ed.), New Approaches to Scientific Realism (pp. 4867). De Gruyter.10.1515/9783110664737-003CrossRefGoogle Scholar
Bird, A. (2022). Knowing Science. Oxford University Press.10.1093/oso/9780199606658.001.0001CrossRefGoogle Scholar
Blodgett, H. C. (1929). The effect of the introduction of reward upon the maze performance of rats. University of California Publications in Psychology, 4(8), 113134.Google Scholar
Bogen, J., & Woodward, J. F. (1988). Saving the phenomena. The Philosophical Review, 97(3), 303352.10.2307/2185445CrossRefGoogle Scholar
Bokulich, A. (2018). Representing and explaining: The eikonic conception of scientific explanation. Philosophy of Science, 85(5), 793805.10.1086/699693CrossRefGoogle Scholar
Boyd, R. N. (1983). On the current status of the issue of scientific realism. In Hempel, C. G., Putnam, H., & Essler, W. K. (Eds.), Methodology, Epistemology, and Philosophy of Science: Essays in Honour of Wolfgang Stegmüller on the Occasion of His 60th Birthday, June 3rd, 1983 (pp. 4590). Springer International Publishing. https://doi.org/10.1007/978-94-015-7676-5_3CrossRefGoogle Scholar
Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 47454765.10.1523/JNEUROSCI.12-12-04745.1992CrossRefGoogle Scholar
Bromberger, S. (1966). Why-questions. In Colodny, R. (Ed.), Mind and Cosmos (pp. 86111). University of Pittsburgh Press.Google Scholar
Brooks, D. S., DiFrisco, J., & Wimsatt, W. C. (2021). Levels of Organization in the Biological Sciences. MIT Press.10.7551/mitpress/12389.001.0001CrossRefGoogle Scholar
Brown, A. M. (2019). The classics updated, or an act of electrophysiological sacrilege? The Journal of Physiology, 597(11), 28212825.10.1113/JP276771CrossRefGoogle ScholarPubMed
Brown, A. M. (2020). A Companion Guide to the Hodgkin-Huxley Papers. The Physiological Society.Google Scholar
Cabrera, F. (2022). Inference to the best explanation: An overview. In Magnani, L. (Ed.), Handbook of Abductive Cognition (pp. 134). Springer International Publishing. https://doi.org/10.1007/978-3-030-68436-5_77-1Google Scholar
Campos, D. G. (2011). On the distinction between Peirce’s abduction and Lipton’s inference to the best explanation. Synthese, 180(3), 419442.10.1007/s11229-009-9709-3CrossRefGoogle Scholar
Carey, S. (2009). The Origin of Concepts. Oxford University Press.10.1093/acprof:oso/9780195367638.001.0001CrossRefGoogle Scholar
Carroll, J. W. (1997). Lipton on compatible contrasts. Analysis, 57(3), 170178.10.1093/analys/57.3.170CrossRefGoogle Scholar
Carter, J. A., & Pritchard, D. (2017). Inference to the best explanation and epistemic circularity. In McCain, K. & Poston, T. (Eds.), Best Explanations: New Essays on Inference to the Best Explanation (pp. 133149). Oxford University Press.Google Scholar
Cartwright, N. (1982). When explanation leads to inference. Philosophical Topics, 13(1), 111121.10.5840/philtopics19821316CrossRefGoogle Scholar
Chomsky, N. (2014). Aspects of the Theory of Syntax. MIT Press.Google Scholar
Clark, M. J., & Liggins, D. (2012). Recent work on grounding. Analysis, 72(4), 812823.10.1093/analys/ans086CrossRefGoogle Scholar
Correia, F., & Schnieder, B. (2012). Grounding: An opinionated introduction. In Correia, F. & Schnieder, B. (Eds.), Metaphysical Grounding: Understanding the Structure of Reality (pp. 136). Oxford University Press.10.1017/CBO9781139149136CrossRefGoogle Scholar
Craver, C. F. (2002). Interlevel experiments and multilevel mechanisms in the neuroscience of memory. Philosophy of Science, 69(S3), 8397.10.1086/341836CrossRefGoogle Scholar
Craver, C. F. (2007). Explaining the Brain. Oxford University Press.10.1093/acprof:oso/9780199299317.001.0001CrossRefGoogle Scholar
Craver, C. F. (2008). Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philosophy of Science, 75(5), 10221033.10.1086/594543CrossRefGoogle Scholar
Craver, C. F. (2014). The ontic account of scientific explanation. In Kaiser, M. I., Scholz, O. R., Plenge, D., & Hüttemann, A. (Eds.), Explanation in the Special Sciences (pp. 2752). Springer.10.1007/978-94-007-7563-3_2CrossRefGoogle Scholar
Craver, C. F., & Bechtel, W. (2007). Top-down causation without top-down causes. Biology and Philosophy, 22(4), 547563.10.1007/s10539-006-9028-8CrossRefGoogle Scholar
Craver, C. F., & Darden, L. (2013). In Search of Mechanisms: Discoveries Across the Life Sciences. University of Chicago Press.10.7208/chicago/9780226039824.001.0001CrossRefGoogle Scholar
Craver, C. F., Glennan, S., & Povich, M. (2021). Constitutive relevance & mutual manipulability revisited. Synthese, 199(3–4), 88078828.10.1007/s11229-021-03183-8CrossRefGoogle Scholar
Craver, C. F., & Kaplan, D. M. (2020). Are more details better? On the norms of completeness for mechanistic explanations. The British Journal for the Philosophy of Science, 71(1), 287319.10.1093/bjps/axy015CrossRefGoogle Scholar
Cronin, J. (1987). Mathematical Aspects of Hodgkin-Huxley Neural Theory. Cambridge University Press.10.1017/CBO9780511983955CrossRefGoogle Scholar
Curtis, H. J., & Cole, K. S. (1940). Membrane action potentials from the squid giant axon. Journal of Cellular and Comparative Physiology, 15(2), 147157.10.1002/jcp.1030150204CrossRefGoogle Scholar
Curtis, H. J., & Cole, K. S. (1942). Membrane resting and action potentials from the squid giant axon. Journal of Cellular and Comparative Physiology, 19(2), 135144.10.1002/jcp.1030190202CrossRefGoogle Scholar
Darden, L. (1987). Viewing the history of science as compiled hindsight. AI Magazine, 8(2), 33.Google Scholar
Darden, L. (2017). Strategies for discovering mechanisms. In Glennan, S. & Illari, P. M. (Eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy (pp. 255266). Routledge.10.4324/9781315731544-19CrossRefGoogle Scholar
Darden, L., & Maull, N. (1977). Interfield theories. Philosophy of Science, 44(1), 4364.10.1086/288723CrossRefGoogle Scholar
Davey, K. (2023). On inferring explanations and inference to the best explanation. Episteme, 1–18.Google Scholar
Day, T., & Kincaid, H. (1994). Putting inference to the best explanation in its place. Synthese, 98(2), 271295.10.1007/BF01063944CrossRefGoogle Scholar
De Lafuente, V., & Ruiz, O. (2004). The orientation dependence of the Hermann grid illusion. Experimental Brain Research, 154(2), 255260.10.1007/s00221-003-1700-5CrossRefGoogle ScholarPubMed
De Palma, A., & Pareti, G. (2011). Bernstein’s long path to membrane theory: Radical change and conservation in nineteenth-century German electrophysiology. Journal of the History of the Neurosciences, 20(4), 306337.10.1080/0964704X.2010.532024CrossRefGoogle ScholarPubMed
De Regt, H. W. (2017). Understanding Scientific Understanding. Oxford University Press.10.1093/oso/9780190652913.001.0001CrossRefGoogle Scholar
Doppelt, G. (2014). Best theory scientific realism. European Journal for Philosophy of Science, 4, 271291.10.1007/s13194-014-0090-9CrossRefGoogle Scholar
Douven, I. (2017b). Inference to the best explanation: What is it? And why should we care? In McCain, K. & Poston, T. (Eds.), Best Explanations: New Essays on Inference to the Best Explanation (pp. 422). Oxford University Press.Google Scholar
Douven, I. (2022). The Art of Abduction. MIT Press.10.7551/mitpress/14179.001.0001CrossRefGoogle Scholar
Earman, J. (1992). Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory. MIT Press.Google Scholar
Ennis, R. H. (1968). Enumerative induction and best explanation. The Journal of Philosophy, 65(18), 523529.10.2307/2024114CrossRefGoogle Scholar
Fann, K. T. (2012). Peirce’s Theory of Abduction. Springer Science & Business Media.Google Scholar
Firestone, C., & Scholl, B. J. (2014). “Top-down” effects where none should be found: The El Greco fallacy in perception research. Psychological Science, 25(1), 3846.10.1177/0956797613485092CrossRefGoogle Scholar
Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-to-individual generalizability is a threat to human subjects research. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6106E6115.Google ScholarPubMed
Frankfurt, H. G. (1958). Peirce’s notion of abduction. The Journal of Philosophy, 55(14), 593597.10.2307/2021966CrossRefGoogle Scholar
Fumerton, R. (1980). Induction and reasoning to the best explanation. Philosophy of Science, 47(4), 589600.10.1086/288959CrossRefGoogle Scholar
Fumerton, R. (2017). Reasoning to the best explanation. In McCain, K. & Poston, T. (Eds.), Best Explanations: New Essays on Inference to the Best Explanation (pp. 6579). Oxford University Press.Google Scholar
Gabbay, D., & Woods, J. (2005). The Reach of Abduction: Insight and Trial. Elsevier.Google Scholar
Garfinkel, A. (1982). Forms of Explanation: Rethinking the Questions in Social Theory. Yale Univesity Press.Google Scholar
Gemes, K. (1993). Hypothetico-deductivism, content, and the natural axiomatization of theories. Philosophy of Science, 60(3), 477487.10.1086/289748CrossRefGoogle Scholar
Gillett, C. (2016). Reduction and Emergence in Science and Philosophy. Cambridge University Press.10.1017/CBO9781139871716CrossRefGoogle Scholar
Gillett, C. (2021). Using compositional explanations to understand compositional levels: An integrative account. In Brooks, D., DiFrisco, J., & Wimsatt, W. (Eds.), Levels of Organization in the Biological Sciences (p. 233). MIT Press.10.7551/mitpress/12389.003.0016CrossRefGoogle Scholar
Glennan, S., & Illari, P. M. (2017). The Routledge Handbook of Mechanisms and Mechanical Philosophy. Routledge.10.4324/9781315731544CrossRefGoogle Scholar
Glymour, C. (1980a). Theory and Evidence. Princeton University Press.Google Scholar
Glymour, C. (1980b). Hypothetico-deductivism is hopeless. Philosophy of Science, 47(2), 322325.10.1086/288935CrossRefGoogle Scholar
Greco, J. (2014). Episteme: Knowledge and understanding. In Boyd, C. A. & Timpe, K. (Eds.), Virtues and Their Vices (pp. 285302). Oxford University Press.Google Scholar
Grimes, T. R. (1993). Explanatory understanding and contrastive facts. Philosophica, 51(1), 2138.10.21825/philosophica.82385CrossRefGoogle Scholar
Grimm, S. R. (2014). Understanding as knowledge of causes. In Fairweather, F. (Ed.), Virtue Epistemology Naturalized: Bridges between Virtue Epistemology and Philosophy of Science (pp. 329345). Springer.10.1007/978-3-319-04672-3_19CrossRefGoogle Scholar
Hammond, C. (2014). Cellular and Molecular Neurophysiology. Academic Press.Google Scholar
Hanson, N. R. (1960). Is there a logic of scientific discovery? Australasian Journal of Philosophy, 38(2), 91106.10.1080/00048406085200111CrossRefGoogle Scholar
Hanson, N. R. (1972). Patterns of Discovery: An Inquiry into the Conceptual Foundations of Science. Cambridge University Press.Google Scholar
Harinen, T. (2018). Mutual manipulability and causal inbetweenness. Synthese, 195(1), 3554.10.1007/s11229-014-0564-5CrossRefGoogle Scholar
Harman, G. H. (1965). The inference to the best explanation. The Philosophical Review, 74(1), 8895.10.2307/2183532CrossRefGoogle Scholar
Harman, G. H. (1968). Enumerative induction as inference to the best explanation. The Journal of Philosophy, 65(18), 529533.10.2307/2024115CrossRefGoogle Scholar
Hartline, H. K. (1938). The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. American Journal of Physiology-Legacy Content, 121(2), 400415.10.1152/ajplegacy.1938.121.2.400CrossRefGoogle Scholar
Haugen, T. A., Solberg, P. A., Foster, C., Morán-Navarro, R., Breitschädel, F., & Hopkins, W. G. (2018). Peak age and performance progression in world-class track-and-field athletes. International Journal of Sports Physiology and Performance, 13(9), 11221129.10.1123/ijspp.2017-0682CrossRefGoogle ScholarPubMed
Heil, J. (2012). The Universe as We Find It. Oxford University Press.10.1093/acprof:oso/9780199596201.001.0001CrossRefGoogle Scholar
Hempel, C. G. (1965). Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. Free Press.Google Scholar
Hempel, C. G. (1966). Philosophy of Natural Science. Prentice-Hall.Google Scholar
Hendry, R. F. (2006). Elements, compounds, and other chemical kinds. Philosophy of Science, 73(5), 864875.10.1086/518745CrossRefGoogle Scholar
Hendry, R. F. (2024). Mechanisms in chemistry. In Cordovil, J. L., Santos, G., & Vecchi, D. (Eds.), New Mechanism: Explanation, Emergence and Reduction (pp. 139160). Springer International Publishing Cham. https://doi.org/10.1007/978-3-031-46917-6_7CrossRefGoogle Scholar
Hermann, L. (1870). Eine Erscheinung simultanen Contrastes [A phenomenon of simultaneous contrast]. Archiv für die gesamte Physiologie des Menschen und der Tiere, 3(1), 1315.Google Scholar
Hodgkin, A. (1994). Chance and Design: Reminiscences of Science in Peace and War. Cambridge University Press.Google Scholar
Hodgkin, A. L. (1938). The subthreshold potentials in a crustacean nerve fibre. Proceedings of the Royal Society of London. Series B-Biological Sciences, 126(842), 87121.Google Scholar
Hodgkin, A. L. (1951). The ionic basis of electrical activity in nerve and muscle. Biological Reviews, 26(4), 339409.10.1111/j.1469-185X.1951.tb01204.xCrossRefGoogle Scholar
Hodgkin, A. L. (1976). Chance and design in electrophysiology: An informal account of certain experiments on nerve carried out between 1934 and 1952. The Journal of Physiology, 263(1), 1.10.1113/jphysiol.1976.sp011620CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Huxley, A. F. (1939). Action potentials recorded from inside a nerve fibre. Nature, 144(3651), 710711.10.1038/144710a0CrossRefGoogle Scholar
Hodgkin, A. L., & Huxley, A. F. (1945). Resting and action potentials in single nerve fibres. The Journal of Physiology, 104(2), 176.10.1113/jphysiol.1945.sp004114CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Huxley, A. F. (1946). Potassium leakage from an active nerve fibre. Nature, 158(4011), 376377.10.1038/158376b0CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Huxley, A. F. (1947). Potassium leakage from an active nerve fibre. The Journal of Physiology, 106(3), 341367.10.1113/jphysiol.1947.sp004216CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Huxley, A. F. (1952a). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 449472.10.1113/jphysiol.1952.sp004717CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Huxley, A. F. (1952b). The components of membrane conductance in the giant axon of Loligo. The Journal of Physiology, 116(4), 473496.10.1113/jphysiol.1952.sp004718CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Huxley, A. F. (1952c). The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. The Journal of Physiology, 116(4), 497506.10.1113/jphysiol.1952.sp004719CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Huxley, A. F. (1952d). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500544.10.1113/jphysiol.1952.sp004764CrossRefGoogle ScholarPubMed
Hodgkin, A. L., Huxley, A. F., & Katz, B. (1949). Ionic currents underlying activity in the giant axon of the squid. Archives des sciences physiologiques, 3, 129150.Google Scholar
Hodgkin, A. L., Huxley, A. F., & Katz, B. (1952). Measurement of current-voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 424448.10.1113/jphysiol.1952.sp004716CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Katz, B. (1949a). The effect of sodium ions on the electrical activity of the giant axon of the squid. The Journal of Physiology, 108(1), 3777.10.1113/jphysiol.1949.sp004310CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Katz, B. (1949b). The effect of temperature on the electrical activity of the giant axon of the squid. The Journal of Physiology, 109(1–2), 240.10.1113/jphysiol.1949.sp004388CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Keynes, R. D. (1955). Active transport of cations in giant axons from Sepia and Loligo. The Journal of Physiology, 128(1), 28.10.1113/jphysiol.1955.sp005290CrossRefGoogle ScholarPubMed
Hodgkin, A. L., & Rushton, W. A. H. (1946). The electrical constants of a crustacean nerve fibre. Proceedings of the Royal Society of London. Series B-Biological Sciences, 133(873), 444479.Google ScholarPubMed
Hoffmann, M. (1999). Problems with Peirce’s concept of abduction. Foundations of Science, 4(3), 271305.10.1023/A:1009675824079CrossRefGoogle Scholar
Hollings, S. C., Hopkins, W. G., & Hume, P. A. (2014). Age at peak performance of successful track & field athletes. International Journal of Sports Science & Coaching, 9(4), 651661.10.1260/1747-9541.9.4.651CrossRefGoogle Scholar
Hopper, A. J., Beswick-Jones, H., & Brown, A. M. (2022). A color-coded graphical guide to the Hodgkin and Huxley papers. Advances in Physiology Education, 46(4), 580592.10.1152/advan.00178.2022CrossRefGoogle Scholar
Howson, C., & Urbach, P. (2006). Scientific Reasoning: The Bayesian Approach. Open Court Publishing.Google Scholar
Huxley, A. F. (2004). Andrew F. Huxley. In Squire, L. R. (Ed.), The History of Neuroscience in Autobiography (Vol. 4, pp. 282319). Society for Neuroscience.Google Scholar
Illari, P. M., & Williamson, J. (2012). What is a mechanism? Thinking about mechanisms across the sciences. European Journal for Philosophy of Science, 2(1), 119135.10.1007/s13194-011-0038-2CrossRefGoogle Scholar
Ioannidis, S., & Psillos, S. (2022). Mechanisms in Science. Cambridge University Press.10.1017/9781009019668CrossRefGoogle Scholar
Japyassú, H. F., & Laland, K. N. (2017). Extended spider cognition. Animal Cognition, 20(3), 375395.10.1007/s10071-017-1069-7CrossRefGoogle ScholarPubMed
Jenkins, C. S. (2008). Romeo, René, and the reasons why: What explanation is. In Proceedings of the Aristotelian Society (Vol. 108, pp. 6184). Wiley Online Library.Google Scholar
Kahneman, D. (2011). Thinking, Fast and Slow. Macmillan.Google Scholar
Kaiser, M. I. (2017). The components and boundaries of mechanisms. In Glennan, S. & Illari, P. M. (Eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy (pp. 116130). Routledge.10.4324/9781315731544-9CrossRefGoogle Scholar
Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of Neural Science. McGraw-Hill.Google Scholar
Kaplan, D. M. (2012). How to demarcate the boundaries of cognition. Biology & Philosophy, 27(4), 545570.10.1007/s10539-012-9308-4CrossRefGoogle Scholar
Katz, B. (1947). The effect of electrolyte deficiency on the rate of conduction in a single nerve fibre. The Journal of Physiology, 106(4), 411.10.1113/jphysiol.1947.sp004221CrossRefGoogle Scholar
Kauffman, S. A. (1970). Articulation of parts explanation in biology and the rational search for them. Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1970, 257272.10.1086/psaprocbienmeetp.1970.495768CrossRefGoogle Scholar
Keynes, R. D. (1948). The leakage of radioactive potassium from stimulated nerve. The Journal of Physiology, 107, 35P36P.Google Scholar
Keynes, R. D. (1949). The movements of radioactive ions in resting and stimulated nerve. Archives des sciences physiologiques, 3(2), 165175.Google Scholar
Keynes, R. D., & Lewis, P. R. (1951a). The resting exchange of radioactive potassium in crab nerve. The Journal of Physiology, 113(1), 7398.10.1113/jphysiol.1951.sp004557CrossRefGoogle ScholarPubMed
Keynes, R. D., & Lewis, P. R. (1951b). The sodium and potassium content of cephalopod nerve fibres. The Journal of Physiology, 114(1–2), 151182.10.1113/jphysiol.1951.sp004609CrossRefGoogle Scholar
Khalifa, K., Millson, J., & Risjord, M. (2017). Inference to the best explanation: Fundamentalism’s failures. In McCain, K. & Poston, T. (Eds.), Best Explanations: New Essays on Inference to the Best Explanation (pp. 8096). Oxford University Press.Google Scholar
Kim, J. (1994). Explanatory knowledge and metaphysical dependence. Philosophical Issues, 5, 5169.10.2307/1522873CrossRefGoogle Scholar
Kirchhoff, M. (2013). Extended cognition & the causal-constitutive fallacy: In search for a diachronic and dynamical conception of constitution. Philosophy and Phenomenological Research, 90(2), 320360.10.1111/phpr.12039CrossRefGoogle Scholar
Krickel, B. (2018a). The Mechanical World: The Metaphysical Commitments of the New Mechanistic Approach. Springer.10.1007/978-3-030-03629-4CrossRefGoogle Scholar
Krickel, B. (2018b). Saving the mutual manipulability account of constitutive relevance. Studies in History and Philosophy of Science Part A, 68, 5867.10.1016/j.shpsa.2018.01.003CrossRefGoogle ScholarPubMed
Krickel, B. (2020). Extended cognition, the new mechanists’ mutual manipulability criterion, and the challenge of trivial extendedness. Mind & Language, 35(4), 539561.10.1111/mila.12262CrossRefGoogle Scholar
Krickel, B. (2024). Different types of mechanistic explanation and their ontological implications. In Cordovil, J. L., Santos, G., & Vecchi, D. (Eds.), New Mechanism: Explanation, Emergence and Reduction (pp. 928). Springer International Publishing. https://doi.org/10.1007/978-3-031-46917-6_2CrossRefGoogle Scholar
Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16(1), 3768.10.1152/jn.1953.16.1.37CrossRefGoogle ScholarPubMed
Kuhn, T. S. (1977). The Essential Tension. University of Chicago Press.10.7208/chicago/9780226217239.001.0001CrossRefGoogle Scholar
Ladyman, J., Douven, I., Horsten, L., & Van Fraassen, B. (1997). A defence of van Fraassen’s critique of abductive inference: Reply to Psillos. The Philosophical Quarterly, 47(188), 305321.10.1111/1467-9213.00061CrossRefGoogle Scholar
Lange, M. (2022). Putting explanation back into “inference to the best explanation.” Noûs, 56(1), 84109.10.1111/nous.12349CrossRefGoogle Scholar
Lenoir, T. (1986). Models and instruments in the development of electrophysiology, 1845–1912. Historical Studies in the Physical and Biological Sciences, 17(1), 154.10.2307/27757574CrossRefGoogle ScholarPubMed
Levy, A. (2014). What was Hodgkin and Huxley’s achievement? The British Journal for the Philosophy of Science, 65(3), 469492.10.1093/bjps/axs043CrossRefGoogle Scholar
Lewis, D. (2004). Causation as influence. In Collins, J., Hall, N., & Paul, L. A. (Eds.), Causation and Counterfactuals (pp. 75106). MIT Press.10.7551/mitpress/1752.003.0004CrossRefGoogle Scholar
Lipton, P. (1987). A real contrast. Analysis, 47(4), 207208.10.1093/analys/47.4.207CrossRefGoogle Scholar
Lipton, P. (1990). Contrastive explanation. Royal Institute of Philosophy Supplements, 27, 247266.10.1017/S1358246100005130CrossRefGoogle Scholar
Lipton, P. (1991). Contrastive explanation and causal triangulation. Philosophy of Science, 58(4), 687697.10.1086/289648CrossRefGoogle Scholar
Lipton, P. (1998). The best explanation of a scientific paper. Philosophy of Science, 65(3), 406410.10.1086/392652CrossRefGoogle Scholar
Lipton, P. (2003). Inference to the Best Explanation. Routledge.10.4324/9780203470855CrossRefGoogle Scholar
Lipton, P. (2014). Inference to the best explanation. In Psillos, S. & Curd, M. (Eds.), The Routledge Companion to Philosophy of Science (2nd ed., pp. 225234). Routledge.Google Scholar
Machamer, P., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 125.10.1086/392759CrossRefGoogle Scholar
Mackonis, A. (2013). Inference to the best explanation, coherence and other explanatory virtues. Synthese, 190(6), 975995.10.1007/s11229-011-0054-yCrossRefGoogle Scholar
Magnani, L. (2001). Abduction, Reason and Science: Processes of Discovery and Explanation. Springer Science & Business Media.10.1007/978-1-4419-8562-0CrossRefGoogle Scholar
Magnani, L. (2009). Abductive Cognition: The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning (Vol. 3). Springer.10.1007/978-3-642-03631-6CrossRefGoogle Scholar
Magnani, L. (2017). Abductive Structure of Scientific Creativity. Springer.10.1007/978-3-319-59256-5CrossRefGoogle Scholar
Magnani, L. (2023). Handbook of Abductive Cognition. Springer Nature.10.1007/978-3-031-10135-9CrossRefGoogle Scholar
Marmont, G. (1949). Studies on the axon membrane. Journal of Cellular and Comparative Physiology, 34(3), 351382.10.1002/jcp.1030340303CrossRefGoogle ScholarPubMed
Maudlin, T. (2007). The Metaphysics Within Physics. Oxford University Press.10.1093/acprof:oso/9780199218219.001.0001CrossRefGoogle Scholar
McAuliffe, W. H. (2015). How did abduction get confused with inference to the best explanation? Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy, 51(3), 300319.10.2979/trancharpeirsoc.51.3.300CrossRefGoogle Scholar
McCain, K. (2014). Evidentialism and Epistemic Justification. Routledge.10.4324/9781315882390CrossRefGoogle Scholar
McCain, K. (2015). Explanation and the nature of scientific knowledge. Science & Education, 24(7), 827854.10.1007/s11191-015-9775-5CrossRefGoogle Scholar
McCain, K. (2019). How do explanations lead to scientific knowledge? In McCain, K. & Kampourakis, K. (Eds.), What Is Scientific Knowledge? (pp. 5265). Routledge.10.4324/9780203703809-4CrossRefGoogle Scholar
McCain, K. (2022). Understanding How Science Explains the World. Cambridge University Press.10.1017/9781108997027CrossRefGoogle Scholar
McCain, K., & Poston, T. (2017a). Best Explanations: New Essays on Inference to the Best Explanation. Oxford University Press.Google Scholar
McCain, K., & Poston, T. (2017b). Best explanations: An introduction. In McCain, K. & Poston, T. (Eds.), Best Explanations: New Essays on Inference to the Best Explanation (pp. 13). Oxford University Press.Google Scholar
McKaughan, D. J. (2008). From ugly duckling to swan: C. S. Peirce, abduction, and the pursuit of scientific theories. Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy, 44(3), 446468.Google Scholar
McMullin, E. (2013). The inference that makes science. Zygon®, 48(1), 143191.10.1111/j.1467-9744.2012.01319.xCrossRefGoogle Scholar
Medawar, P. B. (1963). Is the scientific paper a fraud? The Listener, 70(12), 377378.Google Scholar
Mill, J. S. (1843). A System of Logic. John W. Parker.Google Scholar
Miller, G. A. (1956). Human memory and the storage of information. IRE Transactions on Information Theory, 2(3), 129137.10.1109/TIT.1956.1056815CrossRefGoogle Scholar
Misak, C. (2017). Peirce and Ramsey: Truth, pragmatism, and inference to the best explanation. In McCain, K. & Poston, T. (Eds.), Best Explanations: New Essays on Inference to the Best Explanation (pp. 2538). Oxford University Press.Google Scholar
Mizrahi, M. (2012). Why the ultimate argument for scientific realism ultimately fails. Studies in History and Philosophy of Science Part A, 43(1), 132138.10.1016/j.shpsa.2011.11.001CrossRefGoogle Scholar
Mohammadian, M. (2021). Abduction – the context of discovery + underdetermination = inference to the best explanation. Synthese, 198(5), 42054228.10.1007/s11229-019-02337-zCrossRefGoogle Scholar
Moore, D. H. (1975). A study of age group track and field records to relate age and running speed. Nature, 253(5489), 264265.10.1038/253264a0CrossRefGoogle ScholarPubMed
Needham, P. (2000). What is water? Analysis, 60(1), 1321.10.1093/analys/60.1.13CrossRefGoogle Scholar
Needham, P. (2008). Is water a mixure? Bridging the distinction between physical and chemical properties. Studies in History and Philosophy of Science Part A, 39(1), 6677.10.1016/j.shpsa.2007.11.005CrossRefGoogle Scholar
Nernst, W. (1889). Die elektromotorische wirksamkeit der jonen. Zeitschrift für Physikalische Chemie, 4(1), 129181.10.1515/zpch-1889-0412CrossRefGoogle Scholar
Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6), 22012211.10.1523/JNEUROSCI.08-06-02201.1988CrossRefGoogle ScholarPubMed
Niiniluoto, I. (1999). Defending abduction. Philosophy of Science, 66(S3), S436S451.10.1086/392744CrossRefGoogle Scholar
Niiniluoto, I. (2018). Truth-Seeking by Abduction (Vol. 400). Springer.10.1007/978-3-319-99157-3CrossRefGoogle Scholar
Norton, J. D. (2021). The Material Theory of Induction. University of Calgary Press.Google Scholar
Nubiola, J. (2005). Abduction or the logic of surprise. Semiotica, 2005(153), 117130.10.1515/semi.2005.2005.153-1-4.117CrossRefGoogle Scholar
Nyrup, R. (2015). How explanatory reasoning justifies pursuit: A Peircean view of IBE. Philosophy of Science, 82(5), 749760.10.1086/683262CrossRefGoogle Scholar
Okasha, S. (2000). Van Fraassen’s critique of inference to the best explanation. Studies in History and Philosophy of Science Part A, 31(4), 691710.10.1016/S0039-3681(00)00016-9CrossRefGoogle Scholar
Okasha, S. (2002). Philosophy of Science: A Very Short Introduction (Vol. 67). Oxford Paperbacks.10.1093/actrade/9780198745587.001.0001CrossRefGoogle Scholar
Oleksowicz, M. (2023). A new grammar of science. Metascience, 32, 1518.10.1007/s11016-022-00832-7CrossRefGoogle Scholar
Ostwald, W. (1890). Elektrische eigenschaften halbdurchlässiger scheidewände [Electrical properties of semipermeable membranes]. Zeitschrift für Physikalische Chemie, 6(1), 7182.10.1515/zpch-1890-0609CrossRefGoogle Scholar
Overton, E. (1902). Beiträge zur allgemeinen Muskel-und Nervenphysiologie [Contributions to general muscle and nerve physiology]. Archiv für die gesamte Physiologie des Menschen und der Tiere, 92(3), 115280.Google Scholar
Park, S. (2022). The contextual theory of explanation and inference to the best explanation. Axiomathes, 32(Suppl. 2), 311326.10.1007/s10516-021-09605-zCrossRefGoogle Scholar
Pearl, J. (2009). Causality: Models, Reasoning and Inference. Cambridge University Press.10.1017/CBO9780511803161CrossRefGoogle Scholar
Pearson, K. (1911). The Grammar of Science: Physical (3rd ed.). Adam and Charles Black.Google Scholar
Peirce, C. S. (1878). Deduction, induction, and hypothesis. Popular Science Monthly, 13, 470482.Google Scholar
Peirce, C. S. (1992). The Essential Peirce: Selected Philosophical Writings (1893–1913) (Vol. 2). Indiana University Press.Google Scholar
Piccinini, G. (2020). Neurocognitive Mechanisms: Explaining Biological Cognition. Oxford University Press.10.1093/oso/9780198866282.001.0001CrossRefGoogle Scholar
Pitt, J. C. (2001). The dilemma of case studies: Toward a Heraclitian philosophy of science. Perspectives on Science, 9(4), 373382.10.1162/106361401760375785CrossRefGoogle Scholar
Plutynski, A. (2011). Four problems of abduction: A brief history. HOPOS: The Journal of the International Society for the History of Philosophy of Science, 1(2), 227248.Google Scholar
Prychitko, E. (2021). The causal situationist account of constitutive relevance. Synthese, 198(2), 18291843.10.1007/s11229-019-02170-4CrossRefGoogle Scholar
Psillos, S. (1996). On Van Fraassen’s critique of abductive reasoning. The Philosophical Quarterly, 46(182), 3147.10.2307/2956303CrossRefGoogle Scholar
Psillos, S. (2005). Scientific Realism: How Science Tracks Truth. Routledge.10.4324/9780203979648CrossRefGoogle Scholar
Psillos, S. (2007). The fine structure of inference to the best explanation. Philosophy and Phenomenological Research, 74(2), 441448.10.1111/j.1933-1592.2007.00030.xCrossRefGoogle Scholar
Raman, I. M., & Ferster, D. L. (2022). The Annotated Hodgkin and Huxley: A Reader’s Guide. Princeton University Press.Google Scholar
Rappaport, S. (1996). Inference to the best explanation: Is it really different from Mill’s methods? Philosophy of Science, 63(1), 6580.10.1086/289894CrossRefGoogle Scholar
Romo, R., Hernández, A., Zainos, A., & Salinas, E. (1998). Somatosensory discrimination based on cortical microstimulation. Nature, 392(6674), 387390.10.1038/32891CrossRefGoogle ScholarPubMed
Roski, S. (2021). In defence of explanatory realism. Synthese, 199(5–6), 1412114141.10.1007/s11229-021-03413-zCrossRefGoogle Scholar
Rothenberg, M. A. (1950). Studies on permeability in relation to nerve function II. Ionic movements across axonal membranes. Biochimica et Biophysica Acta, 4, 96114.10.1016/0006-3002(50)90012-6CrossRefGoogle Scholar
Ruben, D.-H. (1987). Explaining contrastive facts. Analysis, 47(1), 3537.10.1093/analys/47.1.35CrossRefGoogle Scholar
Salmon, W. C. (1984a). Scientific Explanation and the Causal Structure of the World. Princeton University Press.Google Scholar
Salmon, W. C. (1984b). Scientific explanation: Three basic conceptions. In Fine, A., Forbes, M., & Wessels, L. (Eds.), PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association (Vol. 198, pp. 293305). Cambridge University Press.Google Scholar
Salmon, W. C. (2001). Explanation and confirmation: A Bayesian critique of inference to the best explanation. In Hon, G. & Rakover, S. S. (Eds.), Explanation: Theoretical Approaches and Applications (pp. 6191). Springer.10.1007/978-94-015-9731-9_3CrossRefGoogle Scholar
Salzman, C. D., Britten, K. H., & Newsome, W. T. (1990). Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346(6280), 174177.10.1038/346174a0CrossRefGoogle ScholarPubMed
Schepelmann, F., Aschayeri, H., & Baumgartner, G. (1967). Die Reaktionen der “simple field” Neurone in Area 17 der Katze beim Hermann-Gitter-Kontrast [The responses of simple field neurons in area 17 of the cat to the Hermann grid contrast]. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere, 294(3), R57.Google Scholar
Schickore, J. (2011). More thoughts on HPS: Another 20 years later. Perspectives on Science, 19(4), 453481.10.1162/POSC_a_00049CrossRefGoogle Scholar
Schickore, J. (2019). The structure and function of experimental control in the life sciences. Philosophy of Science, 86(2), 203218.10.1086/701952CrossRefGoogle Scholar
Schiller, P. H., & Carvey, C. E. (2005). The Hermann grid illusion revisited. Perception, 34(11), 13751397.10.1068/p5447CrossRefGoogle ScholarPubMed
Schindler, S. (2013). Mechanistic explanation: Asymmetry lost. In Karakostas, V. & Dieks, D. (Eds.), EPSA11 Perspectives and Foundational Problems in Philosophy of Science (pp. 8191). Springer.10.1007/978-3-319-01306-0_7CrossRefGoogle Scholar
Scholl, R. (2013). Causal inference, mechanisms, and the Semmelweis case. Studies in History and Philosophy of Science Part A, 44(1), 6676.10.1016/j.shpsa.2012.04.002CrossRefGoogle Scholar
Scholl, R. (2015). Inference to the best explanation in the catch-22: How much autonomy for Mill’s method of difference? European Journal for Philosophy of Science, 5(1), 89110.10.1007/s13194-014-0099-0CrossRefGoogle Scholar
Schulz, R., & Curnow, C. (1988). Peak performance and age among superathletes: Track and field, swimming, baseball, tennis, and golf. Journal of Gerontology, 43(5), P113P120.10.1093/geronj/43.5.P113CrossRefGoogle ScholarPubMed
Schupbach, J. N. (2017). Inference to the best explanation, cleaned up and made respectable. In McCain, K. & Poston, T. (Eds.), Best Explanations: New Essays on Inference to the Best Explanation (pp. 3961). Oxford University Press.Google Scholar
Schurz, G. (2008). Patterns of abduction. Synthese, 164(2), 201234.10.1007/s11229-007-9223-4CrossRefGoogle Scholar
Semmelweis, I. (1983). The Etiology, Concept, and Prophylaxis of Childbed Fever (Carter, K. C., Trans.). University of Wisconsin Press.Google Scholar
Şerban, M. (2017). What can polysemy tell us about theories of explanation? European Journal for Philosophy of Science, 7(1), 4156.10.1007/s13194-016-0142-4CrossRefGoogle Scholar
Seyfarth, E.-A. (2006). Julius Bernstein (1839–1917): Pioneer neurobiologist and biophysicist. Biological Cybernetics, 94(1), 28.10.1007/s00422-005-0031-yCrossRefGoogle ScholarPubMed
Shan, Y. (2019). Contrastivism and non‐contrastivism in scientific explanation. Philosophy Compass, 14(8), e12613.10.1111/phc3.12613CrossRefGoogle Scholar
Shan, Y. (2020). Doing Integrated History and Philosophy of Science: A Case Study of the Origin of Genetics (Vol. 320). Springer Nature.10.1007/978-3-030-50617-9CrossRefGoogle Scholar
Shepherd, G. M. (1988). Neurobiology. Oxford University Press.Google Scholar
Sherrington, C. S. (1906). Observations on the scratch-reflex in the spinal dog. The Journal of Physiology, 34(1–2), 1.10.1113/jphysiol.1906.sp001139CrossRefGoogle ScholarPubMed
Shors, T. J., & Matzel, L. D. (1997). Long-term potentiation: What’s learning got to do with it? Behavioral and Brain Sciences, 20(4), 597614.10.1017/S0140525X97001593CrossRefGoogle Scholar
Skinner, B. F. (1957). Verbal Behavior. Appleton-Century-Crofts.10.1037/11256-000CrossRefGoogle Scholar
Spence, K. W., & Lippitt, R. (1946). An experimental test of the sign-gestalt theory of trial and error learning. Journal of Experimental Psychology, 36(6), 491.10.1037/h0062419CrossRefGoogle Scholar
Spillmann, L. (1971). Foveal perceptive fields in the human visual system measured with simultaneous contrast in grids and bars. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere, 326(4), 281299.10.1007/BF00586993CrossRefGoogle ScholarPubMed
Spillmann, L. (1994). The Hermann grid illusion: A tool for studying human perceptive field organization. Perception, 23(6), 691708.10.1068/p230691CrossRefGoogle ScholarPubMed
Spillmann, L. (2014). Receptive fields of visual neurons: The early years. Perception, 43(11), 11451176.10.1068/p7721CrossRefGoogle ScholarPubMed
Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, Prediction, and Search. MIT Press.Google Scholar
Sprenger, J. (2011). Hypothetico‐deductive confirmation. Philosophy Compass, 6(7), 497508.10.1111/j.1747-9991.2011.00409.xCrossRefGoogle Scholar
Strevens, M. (2008). Depth: An Account of Scientific Explanation. Harvard University Press.Google Scholar
Strevens, M. (2012). Précis of Depth. Philosophy and Phenomenological Research, 84(2), 447460.10.1111/j.1933-1592.2011.00573.xCrossRefGoogle Scholar
Suppe, F. (1998a). The structure of a scientific paper. Philosophy of Science, 65(3), 381405.10.1086/392651CrossRefGoogle Scholar
Suppe, F. (1998b). Reply to commentators. Philosophy of Science, 65(3), 417424.10.1086/392654CrossRefGoogle Scholar
Talbot, W. H., Darian-Smith, I., Kornhuber, H. H., & Mountcastle, V. B. (1968). The sense of flutter-vibration: Comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. Journal of Neurophysiology, 31(2), 301334.10.1152/jn.1968.31.2.301CrossRefGoogle ScholarPubMed
Taylor, E. (2018). Against explanatory realism. Philosophical Studies, 175(1), 197219.10.1007/s11098-017-0862-0CrossRefGoogle Scholar
Teller, P. (2010). “Saving the phenomena” today. Philosophy of Science, 77(5), 815826.10.1086/656537CrossRefGoogle Scholar
Temple, D. (1988). The contrast theory of why-questions. Philosophy of Science, 55(1), 141151.10.1086/289421CrossRefGoogle Scholar
Thagard, P. R. (1978). The best explanation: Criteria for theory choice. The Journal of Philosophy, 75(2), 7692.10.2307/2025686CrossRefGoogle Scholar
Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4), 189208.10.1037/h0061626CrossRefGoogle ScholarPubMed
Tolman, E. C., & Honzik, C. H. (1930). Introduction and removal of reward, and maze performance in rats. University of California Publications in Psychology, 4, 257275.Google Scholar
Van Fraassen, B. (1978). The pragmatics of explanation. American Philosophical Quarterly, 14(2), 143150.Google Scholar
Van Fraassen, B. C. (1980). The Scientific Image. Oxford University Press.10.1093/0198244274.001.0001CrossRefGoogle Scholar
Weber, M. (2004). Philosophy of Experimental Biology. Cambridge University Press.10.1017/CBO9780511498596CrossRefGoogle Scholar
Weber, M. (2008). Causes without mechanisms: Experimental regularities, physical laws, and neuroscientific explanation. Philosophy of Science, 75(5), 9951007.10.1086/594541CrossRefGoogle Scholar
Williamson, T. (2016). Abductive philosophy. The Philosophical Forum, 47(3–4), 263280.10.1111/phil.12122CrossRefGoogle Scholar
Wilson, J. M. (2014). No work for a theory of grounding. Inquiry, 57(5–6), 535579.10.1080/0020174X.2014.907542CrossRefGoogle Scholar
Wimsatt, W. C. (1994). The ontology of complex systems: Levels of organization, perspectives, and causal thickets. Canadian Journal of Philosophy Supplementary Volume, 20, 207274.10.1080/00455091.1994.10717400CrossRefGoogle Scholar
Wimsatt, W. C. (2018). Forward. In Glennan, S. & Illari, P. M. (Eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy (pp. xivxvi). Routledge.Google Scholar
Wolfe, J. M. (1984). Global factors in the Hermann grid illusion. Perception, 13(1), 3340.10.1068/p130033CrossRefGoogle ScholarPubMed
Woodward, J. F. (1989). Data and phenomena. Synthese, 79(3), 393472.10.1007/BF00869282CrossRefGoogle Scholar
Wright, C. D., & Van Eck, D. (2018). Ontic explanation is either ontic or explanatory, but not both. Ergo: An Open Access Journal of Philosophy, 5(38), 9971029.Google Scholar
Young, J. Z. (1936). The structure of nerve fibres in cephalopods and crustacea. Proceedings of the Royal Society of London. Series B-Biological Sciences, 121(823), 319337.Google Scholar

Accessibility standard: WCAG 2.0 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The HTML of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kenneth Aizawa, Rutgers University, New Jersey
  • Book: Compositional Abduction and Scientific Interpretation
  • Online publication: 20 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781009435710.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kenneth Aizawa, Rutgers University, New Jersey
  • Book: Compositional Abduction and Scientific Interpretation
  • Online publication: 20 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781009435710.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kenneth Aizawa, Rutgers University, New Jersey
  • Book: Compositional Abduction and Scientific Interpretation
  • Online publication: 20 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781009435710.013
Available formats
×