Published online by Cambridge University Press: 06 January 2010
The monograph addresses research mathematicians and graduate students interested in the module and representation theory of arbitary rings. It is primarily concerned with generalizations of injectivity and projectivity, and simultaneously with modules displaying good direct decomposition properties. Specifically, we study two classes of modules, named continuous and discrete. Both exhibit, in a dual sense, a generous supply of direct summands. The first class contains all injective modules, while the second one contains those projective modules which have a “good” direct sum decomposition.
Continuous, as the term is used here, is not related to continuity in the sense of topology and analysis. It is rather derived from the notion of a continuum. This usage originated with von Neumann's continuous geometries. These are analogues of projective geometries, except that they have no points, but instead a dimension function whose range is a continuum of real numbers. Just as most projective geometries can be coordinatized by simple artinian rings, most continuous geometries are coordinatized by non-noetherian continuous regular rings.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.