Published online by Cambridge University Press: 06 July 2010
1A. Chains, Cochains and Integration
Homology theory reduces topological problems that arise in the use of the classical integral theorems of vector analysis to more easily resolved algebraic problems. Stokes’ theorem on manifolds, which may be considered the fundamental theorem of multivariable calculus, is the generalization of these classical integral theorems. To appreciate how these topological problems arise, the process of integration must be reinterpreted algebraically.
Given an n-dimensional region Ω, we will consider the set Cp( Ω) of all possible p-dimensional objects over which a p-fold integration can be performed. Here it is understood that 0 ≤ p ≤ n and that a 0-fold integration is the sum of values of a function evaluated on a finite set of points. The elements of Cp( Ω), called p-chains, start out conceptually as p-dimensional surfaces, but in order to serve their intended function they must be more than that, for in evaluating integrals it is essential to associate an orientation to a chain. Likewise the idea of an orientation is essential for defining the oriented boundary of a chain (Figure 1.1).
At the very least, then, we wish to ensure that our set of chains Cp(ω) is closed under orientation reversal: for each c ∈ Cp( Ω) there is also −c ∈ Cp( Ω).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.