Published online by Cambridge University Press: 05 June 2012
Rational Power Series in One Variable
The theory of binomial posets developed in the previous chapter sheds considerable light on the “meaning” of generating functions and reduces certain types of enumerative problems to a routine computation. However, it does not seem worthwhile to attack more complicated problems from this point of view. The remainder of this book will for the most part be concerned with other techniques for obtaining and analyzing generating functions. We first consider the simplest general class of generating functions, namely, the rational generating functions. In this chapter we will concern ourselves primarily with rational generating functions in one variable; that is, generating functions of the form F(x) = Σn≥0f(n)xn that are rational functions in the ring K[[x]], where K is a field. This means that there exist polynomials P(x),Q(x) ∈ K[x] such that F(x) = P(x)Q(x)-1 in K[[x]]. Here it is assumed that Q(0) ≠ 0, so that Q(x)-1 exists in K[[x]]. The field of all rational functions in x over K is denoted K(x), so the ring of rational power series is given by K[[x]]∩K(x). For our purposes here it suffices to take K = ℂ or sometimes ℂ with some indeterminates adjoined.
The fundamental property of rational functions in ℂ[[x]] from the viewpoint of enumeration is the following.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.