Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-gtgcz Total loading time: 0 Render date: 2025-06-18T22:30:12.671Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2025

David Alan Clarke
Affiliation:
Saint Mary's University, Nova Scotia
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Alfvén, H. 1942, Existence of electromagnetic-hydrodynamic waves, Nature, v. 150, p. 405.CrossRefGoogle Scholar
Appenzeller, I. 1971, Observational evidence for Parker’s instability of the interstellar gas and magnetic field, Astron. Astrophys., v. 12, p. 313.Google Scholar
Arfken, G. B., Weber, H. J., and Harris, F. E. 2013, Mathematical Methods for Physicists, 7th ed., Chap. 9 (Oxford: Academic Press), ISBN 978-0-12-384654-9.Google Scholar
Armitage, H. J. 2011, Dynamics of protoplanetary disks, Annu. Rev. Astron. Astrophys., v. 49, p. 195.CrossRefGoogle Scholar
Avenhaus, H. et al. 2018, Disks around T Tauri stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS Polarimetric imaging of eight prominent T Tauri disks, Astrophys. J., v. 863, p. 44.CrossRefGoogle Scholar
Balbus, S. A. 2009, Magnetohydrodynamics of protostellar disks, in “Physical Processes in Circumstellar Disks Around Young Stars”, ed. Garcia, P. (Chicago: University of Chicago Press), arXiv:0906.0854 [astro-ph.SR].Google Scholar
Balbus, S. A. and Hawley, J. F. 1991, A powerful local shear instability in weakly magnetized disks, Astrophys. J., v. 376, p. 214.CrossRefGoogle Scholar
Balbus, S. A. and Terquem, C. 2001, Linear analysis of the Hall effect in protostellar disks, Astrophys. J., v. 552, p. 235.CrossRefGoogle Scholar
Batchelor, G. K. 2000, An Introduction to Fluid Dynamics (Cambridge: Cambridge University Press) ISBN 0-521-66396-2.CrossRefGoogle Scholar
Beck, R. 2007, Galactic Magnetic Fields, www.scholarpedia.org/article/Galactic_magnetic_fields (Scholarpedia).Google Scholar
Beck, R., Brandenburg, A., Moss, D., Shukurov, A., and Sokiloff, D. 1996, Galactic magnetism: recent developments and perspectives, Annu. Rev. Astron. Astrophys., v. 34, p. 155.CrossRefGoogle Scholar
Black, D. C. and Scott, E. H. 1983, A numerical study of the effects of ambipolar diffusion on the collapse of magnetic gas clouds, Astrophys. J., v. 263, p. 696.CrossRefGoogle Scholar
Blandford, R. D. and Payne, D. G. 1982, Hydromagnetic flows from accretion discs and the production of radio jets, Mon. Not. R. Astron. Soc., v. 199, p. 883.CrossRefGoogle Scholar
Bradley, G. 1975, A Primer of Linear Algebra (New Jersey: Prentice Hall), ISBN 0-13-700328-5.Google Scholar
Brandenburg, A. 2019, Ambipolar diffusion in large Prandtl number turbulence, Mon. Not. R. Astron. Soc., v. 487, p. 2673.CrossRefGoogle Scholar
Breslau, J. A. and Jardin, S. C. 2003, Global extended magnetohydrodynamic studies of fast magnetic reconnection, Phys. Plasmas, v. 10, p. 1291.CrossRefGoogle Scholar
Bridle, A. H., Perley, R. A., and Henriksen, R. N. 1986, Collimation and polarization of the jets in 3C219, Astronom. J., v. 92, p. 534.Google Scholar
Brio, M. and Wu, C. C. 1988, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., v. 75, p. 400.CrossRefGoogle Scholar
Buether et al. (editors) 2014, Protostars and Planets VI (Tucson: University of Arizona Press), ISBN 978-0-8165-3124-0.Google Scholar
Buffett, B. A. 2000, Earth’s core and the geodynamo, Science, v. 288, p. 2007.CrossRefGoogle ScholarPubMed
Bullard, E. C. 1955, The stability of a homopolar dynamo, Proc. Cambridge Phil. Soc., v. 51, p. 744.Google Scholar
Burkhart, B., Lazarian, A., Balsara, D., Meyer, C., and Cho, J. 2015, Alfvénic turbulence beyond the ambipolar diffusion scale, Astrophys. J., v. 805, p. 118.CrossRefGoogle Scholar
Burns, J. O., O’Dea, C. P., Gregory, S. A., and Balonek, T. J. 1986, Observational constraints on bending the wide-angle tailed radio galaxy 1919+479, Astrophys. J., v. 307, p. 73.CrossRefGoogle Scholar
Callen, J. D. 2006, Fundamentals of Plasma Physics (Madison: University of Wisconsin Press), www.cptc.wisc.edu/course-materials/.Google Scholar
Carroll, B. W. and Ostlie, D. A. 2017, An Introduction to Modern Astrophysics, 2nd ed. (Cambridge: Cambridge University Press), ISBN 978-1-108-42216-1.CrossRefGoogle Scholar
Chandrasekhar, S. 1960, The stability of non-dissipative Couette flow in hydromagnetics, Proc. Natl. Acad. Sci., v. 46 (2), p. 253.Google ScholarPubMed
Chen, C.-Y. and Ostriker, E. C. 2012, Ambipolar diffusion in action: transient C-shock structure and prestellar core formation, Astrophys. J., v. 744, p. 124.CrossRefGoogle Scholar
Chen, F. F. 1984, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (New York: Plenum Press), ISBN 0-306-41332-9.CrossRefGoogle Scholar
Clarke, D. A. 1996, A consistent method of characteristics (CMoC) for multidimensional MHD, Astrophys. J. v. 457, p. 291.CrossRefGoogle Scholar
Clarke, D. A., MacDonald, N. R., Ramsey, J. P., and Richardson, M. 2008, Astrophysical jets, Physics in Canada, v. 65, p. 47.Google Scholar
Clarke, D. A., Norman, M. L., and Burns, J. O. 1986, Numerical simulations of a magnetically confined jet, Astrophys. J., v. 311, p. L63.CrossRefGoogle Scholar
Clarke, D. A., Norman, M. L., and Burns, J. O. 1989, Numerical observations of a simulated radio jet with a passive helical magnetic field, Astrophys. J., v. 342, p. 700CrossRefGoogle Scholar
Courant, R., Friedrichs, K., and Lewy, H. 1928, Über die partiellen differenzen-gleichungen der mathematischen Physik, Math. Ann. (in German), v. 100 (1), p. 32.Google Scholar
Draine, B. T. 1986, Multicomponent, reacting MHD flows, Mon. Not. R. Astron. Soc., v. 220, p. 133.CrossRefGoogle Scholar
Draine, B. T., Roberge, W. G., and Dalgarno, A. 1983, Magnetohydrodynamical shock waves in molecular disks, Astrophys. J., v. 264, p. 485.CrossRefGoogle Scholar
Duffin, D. F. and Pudritz, R. E. 2008, Simulating hydromagnetic processes in star formation: introducing ambipolar diffusion into an adaptive mesh refinement code, Mon. Not. R. Astron. Soc., v. 391, p. 1659.CrossRefGoogle Scholar
Evans, C. E. and Hawley, J. F. 1988, Simulation of magnetohydrodynamical flows: a constrained transport method, Astrophys. J., v. 332, p. 659.CrossRefGoogle Scholar
Faber, T. 1995, Fluid Dynamics for Physicists (Cambridge: Cambridge University Press) ISBN 0-521-41943-3.CrossRefGoogle Scholar
Falle, S. A. E. G. 2002, Rarefaction shocks, shock errors, and low order of accuracy in ZEUS, Astrophys. J., 577, L123.CrossRefGoogle Scholar
Falle, S. A. E. G. 2003, A numerical scheme for multifluid magnetohydrodynamics, Mon. Not. R. Astron. Soc., v. 344, p. 1210.CrossRefGoogle Scholar
Feng, H. and Wang, J. M. 2008, Observations of a 2 3 type interplanetary intermediate shock, Solar Phys., v. 247, p. 195.Google Scholar
Feng, H., Wang, J. M., and Chao, J. K. 2009, Observations of a subcritical switch-on shock, Astron. Astrophys., v. 503, p. 203.CrossRefGoogle Scholar
Ferriere, K. 2001, The interstellar environment of our galaxy, Rev. Mod. Phys., v. 73 (4), p. 1031; see also www.wikipedia.org/wiki/Inter-stellar_medium.Google Scholar
Fiedler, R. A. and Mouschovias, T. C. 1993, Ambipolar diffusion and star formation: formation and contraction of axisymmetric cloud cores, Astrophys. J., v. 415, p. 680.CrossRefGoogle Scholar
Fricke, K. 1969, Stability of rotating stars II. The influence of toroidal and poloidal magnetic fields, Astron. Astrophys., v. 1, p. 388.Google Scholar
Fowles, G. and Cassiday, G. 2004, Analytic Mechanics, ed. 7 (Belmont: Thomson Brooks/Cole), ISBN 0-534-49492-7.Google Scholar
Goedbloed, H., Keppens, R., and Poedts, S. 2019, Magnetohydrodynamics of Laboratory and Astrophysical Plasmas (Cambridge: Cambridge University Press), ISBN 978-1-107-12392-2.CrossRefGoogle Scholar
Gailitis, A., Lielausis, O., Dement’ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H., and Will, G. 2000, Detection of a flow-induced magnetic field eigenmode in the Riga Dynamo Facility, Phys. Rev. Lett., v. 84, p. 4365.CrossRefGoogle ScholarPubMed
Galtier, S. 2016, Introduction to Modern Magnetohydrodynamics, 10.3 (Cambridge: Cambridge University Press), ISBN 978-1-107-15865-8.CrossRefGoogle Scholar
Glatzmaier, G. A. and Roberts, P. H. 1995, A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, v. 377, p. 203.CrossRefGoogle Scholar
Hada, T. 1994, Evolutionary conditions in the dissipative MHD system: stability of intermediate MHD shock waves, Geophys. Res. Lett., v. 21, p. 2275.CrossRefGoogle Scholar
Hagen, H. J. and Helmi, A. 2018, The vertical force in the solar neighbourhood using red clump stars in TGAS and RAVE, Astron. Astrophys., v. 615, p. A99.CrossRefGoogle Scholar
Halliday, D., Resnick, R., and Walker, J. 2003, Fundamentals of Physics, 6th ed. (New York: Wiley), ISBN 0-471-22862-1. (Chap. 1: Chap. 20 in HRW; Chap. 9: Chap. 30, 31; Chap. 10: p. 622)Google Scholar
Harten, A. 1983, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., v. 49, p. 357.CrossRefGoogle Scholar
Inoue, T. and Inutsuka, S. 2007, Evolutionary conditions in dissipative MHD systems revisited, Prog. Theor. Phys., v. 118, p. 47.CrossRefGoogle Scholar
Jackson, J. D. 1975, Classical Electrodynamics, 2nd ed. (New York: Wiley), ISBN 0-471-43132-X.Google Scholar
Kageyama, A. and Sato, T. 1995, Computer simulation of a magnetohydrodynamical dynamo, II, Phys. Plasmas, v. 2, p. 1421.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. 1987, Fluid Mechanics, 2nd ed. (Amsterdam: Elsevier), ISBN 978-0-08-033933-7.Google Scholar
Lesur, G., Kunz, M. W., and Fromang, S. 2014, Thanatology in protoplanetary discs: the combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones, Astronomy & Astrophys., v. 566, p. A56.CrossRefGoogle Scholar
Li, P. S., McKee, C. F., and Klein, R. I. 2006, The heavy-ion approximation for ambipolar diffusion calculations for weakly ionised plasmas, Astrophys. J., v. 653, p. 1280.CrossRefGoogle Scholar
Liberman, M. A. and Velikovich, A. L. 1986, Physics of Shock Waves in Gases and Plasmas, Springer Series in Electrophysics, v. 19 (Berlin: Springer).CrossRefGoogle Scholar
Lorrain, P. and Corson, D. 1970, Electromagnetic Fields and Waves, 2nd ed. (San Francisco: Freeman), ISBN 0-7167-0331-9.Google Scholar
Lynden-Bell, D. 1996, Magnetic collimation by accretion discs of quasars and stars, Mon. Not. R. Astron. Soc., v. 279, p. 389.CrossRefGoogle Scholar
MacDonald, J. 2015, Structures and Evolution of Single Stars, (San Rafael: Morgan and Claypool).CrossRefGoogle Scholar
Marion, J. B. and Thornton, S. T. 1995, Classical Dynamics of Particles and Systems, 4th ed. (Fort Worth: Saunders College Publishing), ISBN 0-03-097302-3.Google Scholar
Markovski, S. A. 1998, Non-evolutionary discontinuous MHD flows in a dissipative medium, Phys. Plasmas, v. 5, p. 2596.CrossRefGoogle Scholar
McKee, C. F. and Ostriker, E. C. 2007, Theory of star formation, Annu. Rev. Astron. Astrophys., v. 45, p. 565; see also www.wikipedia.org/wiki/Star_formation.CrossRefGoogle Scholar
Nore, C., Brachet, M. E., Politano, H., and Pouquet, A. 1997, Dynamo action in the Taylor–Green vortex near threshold, Phys. Plasmas, v. 4, p. 1.CrossRefGoogle Scholar
Paris, D. T. and Hurd, F. K. 1969, Basic Electromagnetic Theory, 2nd ed. (New York: McGraw-Hill), ISBN 07-048470-8.Google Scholar
Parker, E. N. 1957, Sweet’s mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res., v. 62, p. 509.CrossRefGoogle Scholar
Parker, E. N. 1958, Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., v. 128, p. 664.CrossRefGoogle Scholar
Parker, E. N. 1966, The dynamical state of the interstellar gas and field, Astrophys. J., v. 145, p. 811.CrossRefGoogle Scholar
Perley, R. A., Dreher, J. W., and Cowan, J. J. 1984, The jet and filaments in Cygnus A, Astrophys. J., v. 285, p. L35.Google Scholar
Petschek, H. E. 1964, Magnetic field annihilation, NASA Special Publication, No. SP 50, p. 425.Google Scholar
Pham, T. and Tkalčić, H. 2023, Up-to-fivefold reverberating waves through the earth’s centre and distinctly anisotropic innermost inner core, Nature Communications, v. 14, article 754.CrossRefGoogle ScholarPubMed
Pinkney, J., Burns, J. O., and Hill, J. M. 1994, 1919–479: big WAT in a poor cluster, Astronom. J., v. 108, p. 2031.Google Scholar
Ponomarenko, Y. B. 1973, Theory of the hydromagnetic generator, J. Appl. Mech. Tech. Phys., v. 14, p. 775.Google Scholar
Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P. 1992, Numerical Recipes (Cambridge: Cambridge University Press), ISBN 0-521-43064-X.Google Scholar
Ramsey, J. P. and Clarke, D. A. 2011, Simulating protostellar jets simultaneously at launching and observational scales, Astrophys. J., v. 728, p. L11.CrossRefGoogle Scholar
Ramsey, J. P. and Clarke, D. A. 2019, MHD simulations of the formation and propagation of protostellar jets to observational length-scales, Mon. Not. R. Astron. Soc., v. 484, p. 2364.CrossRefGoogle Scholar
Reynolds, O. 1883, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philos. Trans. R. Soc., v. 174, p. 935.Google Scholar
Roe, P. L. and Balsara, D. S. 1996 Notes on the eigensystems of magnetohydrodynamics, SIAM J. Appl. Math., v. 56, p. 57.CrossRefGoogle Scholar
Ryu, D. and Jones, T. W. 1995, Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow, Astrophys. J., v. 442, p. 228.CrossRefGoogle Scholar
Ryu, D., Jones, T. W., and Frank, A. 2000, The magnetohydrodynamic Kelvin– Helmholtz instability: a three-dimensional study of nonlinear evolution, Astrophys. J., v. 545, p. 475.CrossRefGoogle Scholar
Saripalli, L., Subrahmanyan, R., and Udaya Shankar, N. 2003, Renewed activity in the radio galaxy PKS B1545-321: Twin edge-brightening beams within diffuse radio lobes, Astrophys. J., v. 590, p. 181.CrossRefGoogle Scholar
Shibata, K., Tajima, T., Matsumoto, R., Horiuchi, T., Hanawa, T., Rosner, R., and Uchida, Y. 1989, Non-linear Parker instability of isolated magnetic flux in a plasma, Astrophys. J., v. 388, p. 471.CrossRefGoogle Scholar
Shu, F. H. 1974, The Parker instability in differentially-rotating discs, Astron. Astrophys., v. 33, p. 55.Google Scholar
Sod, G. 1978, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., v. 27, p. 1.CrossRefGoogle Scholar
Solanki, S. K., Inhester, B., and Schüssler, M. 2006, The solar magnetic field, Rep. Prog. Phys., v. 69, p. 563.Google Scholar
Shay, M. A., Drake, J. F., Rogers, B. N., and Denton, R. E. 2001, Alfvénic collisionless magnetic reconnection and the Hall term, J. Geophys. Res., v. 106, p. 3759.CrossRefGoogle Scholar
Spruit, H. C. 1996, Magnetohydrodynamical jets and winds from accretion disks, NATO Advanced Science Institutes Series C, v. 477, ed. Wijers, R. A. M. J., Davies, M. B., and Tout, C. A., p. 249 (Dordrecht: Kluwer Academic).Google Scholar
Stone, J. M., Hawley, J. F. Gammie, C. F., and Balbus, S. A. 1996, Three-dimensional magnetohydrodynamical simulations of vertically stratified accretion disks, Astrophys. J., v. 463, p. 656.Google Scholar
Sweet, P. A. 1958, The neutral point theory of solar flares, in “Proceedings of the IAU Symposium #6 on Electromagnetic Phenomena in Cosmical Physics”, Stockholm, Sweden, 1956, ed. Lehnert, Bo, p. 123 (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Takahashi, K. and Yamada, S. 2013, Regular and non-regular solutions of the Riemann problem in ideal MHD, J. Plasma Phys., v. 79, p. 335 (TY13).Google Scholar
Takahashi, K. and Yamada, S. 2014, Exact Riemann solver for ideal MHD that can handle all types of intermediate shocks and switch-on/off waves, J. Plasma Phys., v. 80, p. 255 (TY14).Google Scholar
Tilley, D. A., Balsara, D. S., and Meyer, C. 2012, A numerical scheme and benchmark tests for non-isothermal two-fluid ambipolar diffusion, New Astronomy, v. 17, p. 368.CrossRefGoogle Scholar
Velikhov, E. P. 1959, Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field, J. Exptl. Theoret. Phys., v. 36, p. 1398.Google Scholar
Weber, E. J. and DavisJr., L. 1967, The angular momentum of the solar wind, Astrophys. J., v. 148, p. 217.CrossRefGoogle Scholar
Yamada, M., Ren, Y., Ji, H., Breslau, J. A., Gerhardt, S. P., Kulsrud, R. M., and Kuritsyn, A. 2006, Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality, Phys. Plasmas, v. 13, p. 052119.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David Alan Clarke, Saint Mary's University, Nova Scotia
  • Book: A First Course in Magnetohydrodynamics
  • Online publication: 05 June 2025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David Alan Clarke, Saint Mary's University, Nova Scotia
  • Book: A First Course in Magnetohydrodynamics
  • Online publication: 05 June 2025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David Alan Clarke, Saint Mary's University, Nova Scotia
  • Book: A First Course in Magnetohydrodynamics
  • Online publication: 05 June 2025
Available formats
×