from Part II - Additional Topics in (M)HD
Published online by Cambridge University Press: 05 June 2025
This chapter returns to the zero-field limit of MHD replacing the isotropic pressure force density in ideal HD with force densities arising from the viscous stress tensor for viscid HD. As tensor analysis is not a prerequisite for this course, the stress tensor is developed purely from a vector analysis of all stresses applied at a single point in a viscid fluid. This leads to the introduction of bulk and kinetic viscosity in a Newtonian fluid and the identification of ordinary thermal pressure with the trace of the stress tensor. Various flavours of the Navier–Stokes equation are developed including compressible and incompressible forms. The Reynold’s number is introduced as a result of scaling the Navier–Stokes equation which leads to a qualitative discussion on turbulent and laminar flow. Numerous examples are given in which a simplified form of the Navier–Stokes equation can be solved analytically, including plane-parallel flow, open channel flow, Hagen–Poiseuille flow, and Couette flow.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.