Skip to main content Accessibility help
×
Hostname: page-component-65f69f4695-j2lhx Total loading time: 0 Render date: 2025-06-27T10:58:48.464Z Has data issue: false hasContentIssue false

V - Characteristic Classes

Published online by Cambridge University Press:  06 July 2010

Calvin C. Moore
Affiliation:
University of California, Berkeley
Claude L. Schochet
Affiliation:
Wayne State University, Detroit
Get access

Summary

In this chapter we mimic as closely as possible [Milnor and Stasheff 1974], itself an expos´e of the Chern–Weil construction of characteristic classes in terms of curvature forms. See also [Dupont 1978; Husemoller 1975; Lawson and Michelsohn 1989; de Rham 1955].

The Chern–Weil procedure begins with a vector bundle with a certain structural group G. In our situation we consider complex (tangentially smooth) bundles with structural group GL(n,ℂ) real vector bundles with structural group GL(n, ℝ), and oriented real even-dimensional vector bundles with structural group SO.(2n). Choose a tangential connection ∇, see below, that respects the structure. The associated curvature form K determines a closed tangential 2- form whose tangential cohomology class is independent of choice of the connection. Then any polynomial or formal power series P which is G-invariant determines a characteristic form. In the case X = M is a manifold with FX = TM then this yields the usual characteristic classes in de Rham cohomology H*M.

We shall assume throughout that all bundles over foliated spaces are tangentially smooth and that leaf-preserving maps between foliated spaces are also tangentially smooth; this is not a real restriction, in view of our smoothing results (Proposition 2.16). We use Milnor and Stasheff’s sign conventions for characteristic classes.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×