from Part III - Machine Learning for Data Science
Published online by Cambridge University Press: aN Invalid Date NaN
This chapter covers unsupervised learning, where algorithms analyze data without known true labels or outcomes. Unlike supervised learning, the goal is to discover hidden patterns and structures in data.
The chapter explores three main techniques: Agglomerative clustering works bottom-up, starting with individual data points and merging similar ones into larger clusters. Divisive clustering (including k-means) takes a top-down approach, splitting data into smaller groups. Both methods use distance matrices and dendrograms to visualize cluster relationships.
Expectation Maximization (EM) handles incomplete data by iteratively estimating missing parameters using maximum likelihood estimation. Model quality is assessed using AIC and BIC criteria.
The chapter also introduces reinforcement learning, where agents learn optimal actions through trial-and-error interactions with environments, receiving rewards or penalties. Applications include robotics, gaming, and autonomous systems. Throughout, the chapter emphasizes the creative, interpretive nature of unsupervised learning compared to more structured supervised approaches.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.