Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-ks5gx Total loading time: 0 Render date: 2025-06-19T01:12:17.701Z Has data issue: false hasContentIssue false

Chapter 6 - Cutaneous Lymphoid Neoplasms

Published online by Cambridge University Press:  17 June 2025

Mai P. Hoang
Affiliation:
Harvard Medical School, Boston
Get access

Summary

Primary cutaneous lymphomas comprise a group of B- and T-cell lymphomas that do not have extracutaneous involvement at the time of diagnosis. They are the second most common group of extranodal lymphomas. Cutaneous B-cell lymphomas are generally classified into three main subgroups: cutaneous marginal zone B-cell lymphoma, cutaneous follicle center lymphoma, and cutaneous large B-cell lymphoma, leg type. Cutaneous T-cell and NK-cell lymphomas can derive from the helper T-cells (CD4+), cytotoxic T-cells (CD8+), gamma-delta T-cells (CD56+), or follicle helper T-cells (CD279/PD1). Immunohistochemistry plays an important role in the classification of B- and T-cell lymphoid lesions. A number of immunostains have recently become commercially available and can serve as diagnostic adjuncts in cases lacking characteristic immunohistochemical staining.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Swerdlow, SH, Campo, E, Harris, NL, et al. WHO classification of tumors haematopoietic and lymphoid tissues. Lyon: IARC, 2008.Google Scholar
Willemze, R, Cerroni, L, Kempf, W, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 2019; 133: 1703–14.CrossRefGoogle ScholarPubMed
Swerdlow, SH, Campo, E, Pileri, SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127: 2375–90.CrossRefGoogle ScholarPubMed
Kempf, W, Mitteldorf, C, Cerroni, L, et al. Classifications of cutaneous lymphomas and lymphoproliferative disorders: An update from the EORTC cutaneous lymphoma histopathology group. J Eur Acad Dermatol Venereol 2024; 38: 1491–503.CrossRefGoogle ScholarPubMed
Cerroni, L, Signoretti, S, Hofler, G, et al. Primary cutaneous marginal B-cell lymphoma: a recently described entity of low-grade malignant cutaneous B-cell lymphoma. Am J Surg Pathol 1997; 21: 1307–15.CrossRefGoogle ScholarPubMed
Takino, H, Li, C, Hu, S, et al. Primary cutaneous marginal zone B-cell lymphoma: a molecular and clinicopathological study of cases from Asia, Germany, and the United States. Mod Pathol 2008; 21: 1517–26.CrossRefGoogle ScholarPubMed
Edinger, JT, Kant, JA, Swerdlow, SH. Cutaneous marginal zone lymphomas have distinctive features and include 2 subsets. Am J Surg Pathol 2010; 34: 1830–41.CrossRefGoogle ScholarPubMed
Carlsen, ED, Swerdlow, SH, Cook, JR, Gibson, SE. Class-switched primary cutaneous marginal zone lymphomas are frequently IgG4-positive and have features distinct from IgM-positive cases. Am J Surg Pathol 2019; 43: 1403–12.CrossRefGoogle ScholarPubMed
de Leval, L, Harris, NL, Longtine, J, Ferry, JA, Duncan, LM. Cutaneous B-cell lymphomas of follicular and marginal zone types: Use of Bcl-6, CD10, Bcl-2, and CD21 in differential diagnosis and classification. Am J Surg Pathol 2001; 25: 732–41.CrossRefGoogle ScholarPubMed
Cerroni, L, Arzberger, E, Putz, B, et al. Primary cutaneous follicular center cell lymphoma with follicular growth pattern. Blood 2000; 95: 3922–8.CrossRefGoogle ScholarPubMed
Brenner, I, Roth, S, Puppe, B, Wobser, M, Rosenwald, A, Geissinger, E. Primary cutaneous marginal zone lymphomas with plasmacytic differentiation show frequent IgG4 expression. Mod Pathol 2013; 26: 1568–76.CrossRefGoogle ScholarPubMed
Geyer, JT, Ferry, JA, Longine, JA, Flotte, TJ, Harris, NL, Zukerberg, LR. Characteristics of cutaneous marginal zone lymphomas with marked plasmacytic differentiation and a T cell-rich background. Am J Clin Pathol 2010; 133: 5969.CrossRefGoogle Scholar
Kutzner, H, Kerl, H, Pfaltz, MC, Kempf, W. CD123-positive plasmacytoid dendritic cells in primary cutaneous marginal zone B-cell lymphoma: diagnostic and pathogenetic implications. Am J Surg Pathol 2009; 33: 1307–13.CrossRefGoogle ScholarPubMed
Falini, B, Agostinelli, C, Bigerna, B, et al. IRTA1 is selectively expressed in nodal and extranodal marginal zone lymphomas. Histopathology 2012; 61: 930–41.CrossRefGoogle ScholarPubMed
Hoefnagel, JJ, Vermeer, MH, Janssen, PM, Fleuren, GJ, Miejer, CJ, Willemze, R. Bcl-2, Bcl-6 and CD10 expression in cutaneous B-cell lymphoma: further support for a follicle centre cell origin and differential diagnostic significance. Br J Dermatol 2003; 149: 1183–91.CrossRefGoogle ScholarPubMed
Zinzani, PL, Quaglino, P, Pimpinelli, N, et al. Prognostic factors in primary cutaneous B-cell lymphoma: the Italian Study Group for Cutaneous Lymphomas. J Clin Oncol 2006; 24: 1376–82.CrossRefGoogle Scholar
Massone, C, Fink-Puches, R, Laimer, M, Rütten, A, Vale, E, Cerroni, L. Miliary and agminated-type primary cutaneous follicle center lymphoma: report of 18 cases. J Am Acad Dermatol 2011; 65: 749–55.CrossRefGoogle ScholarPubMed
Massone, C, Fink-Puches, R, Cerroni, L. Atypical clinical presentation of primary and secondary cutaneous follicle center lymphoma (FCL) on the head characterized by macular lesions. J Am Acad Dermatol 2016; 75: 1000–6.CrossRefGoogle ScholarPubMed
Charli-Joseph, Y, Cerroni, L, LeBoit, PE. Cutaneous spindle-cell B-cell lymphomas: most are neoplasms of follicular center cell origin. Am J Surg Pathol 2015; 39: 737–43.CrossRefGoogle ScholarPubMed
Lawnicki, LC, Weisenburger, DD, Aoun, P, Chan, WC, Wickert, RS, Greiner, TC. The t(14;18) and bcl-2 expression are present in a subset of primary cutaneous follicular lymphoma: association with lower grade. Am J Clin Pathol 2002; 118: 765–72.CrossRefGoogle Scholar
Szablewski, V, Ingen-Housz-Oro, S, Baia, M, Delfau-Larue, MH, Copie-Bergman, C, Ortonne, N. Primary cutaneous follicle center lymphomas expression Bcl2 protein frequently harbor Bcl2 gene break and may present 1p36 deletion: a study of 20 cases. Am J Surg Pathol 2016; 40: 127–36.CrossRefGoogle ScholarPubMed
Koens, L, Vermeer, MH, Willemze, R, Jansen, PM. IgM expression on paraffin sections distinguishes primary cutaneous large B-cell lymphoma, leg type from primary cutaneous follicle center lymphoma. Am J Surg Pathol 2010; 34: 1043–8.CrossRefGoogle ScholarPubMed
Robson, A, Shukur, Z, Ally, M, et al. Immunocytochemical p63 expression discriminates between primary cutaneous follicle center cell and diffuse large B-cell lymphoma-leg type, and is of the TAp63 isoform. Histopathology 2016; 69: 1119.CrossRefGoogle ScholarPubMed
Fink-Puches, R, Wolf, IH, Zalaudek, I, Kerl, H, Cerroni, L. Treatment of primary cutaneous B-cell lymphoma with rituximab. J Am Acad Dermatol 2005; 52: 847–53.CrossRefGoogle ScholarPubMed
Kempf, W, Kazakov, DV, Rutten, A, et al. Primary cutaneous follicle center lymphoma with diffuse CD30 expression: a report of 4 cases of a rare variant. J Am Acad Dermatol 2014; 71: 548–54.CrossRefGoogle ScholarPubMed
Grange, F, Beylot-Barry, M, Courville, P, et al. Primary cutaneous diffuse large B-cell lymphoma, leg type: clinicopathologic features and prognositc analysis in 60 cases. Arch Dermatol 2007; 143: 1144–50.CrossRefGoogle Scholar
Senff, NJ, Hoefnagel, JJ, Jansen, PM, et al. Reclassification of 300 primary cutaneous B-Cell lymphomas according to the new WHO-EORTC classification for cutaneous lymphomas: comparison with previous classifications and identification of prognostic markers. J Clin Oncol 2007; 25: 1581–7.CrossRefGoogle Scholar
Hoefnagel, JJ, Dijkman, R, Basso, K, et al. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling. Blood 2005; 105: 3671–8.CrossRefGoogle ScholarPubMed
Seçkin, D, Barete, S, Euvrard, S, et al. Primary cutaneous posttransplant lymphoproliferative disorders in solid organ transplant recipients: a multicenter European case series. Am J Transplant 2013; 13: 2146–53.CrossRefGoogle ScholarPubMed
Mareschal, S, Pham-Ledard, A, Viailly, PJ, et al. Identification of somatic mutations in primary cutaneous diffuse large B-cell lymphoma, leg type by massive parallel sequencing. J Invest Dermatol 2017; 137: 1984–94.CrossRefGoogle ScholarPubMed
Ferreri, AJ, Dognini, GP, Campo, E, et al. Variations in clinical presentation, frequency of hemophagocytosis and clinical behavior of intravascular lymphoma diagnosed in different geographical regions. Haematologica 2007; 92: 486–92.CrossRefGoogle ScholarPubMed
Ferreri, AJM, Campo, E, Seymour, JF, et al. Intravascular lymphoma: clinical presentation, natural history, management and prognostic factors in a series of 38 cases, with special emphasis on the “cutaneous variant.” Br J Haematol 2004; 127: 173–83.CrossRefGoogle Scholar
Qiu, L, Wang, SA, Vega, F, et al. From the archives of MD Anderson Cancer Center: intravascular large B-cell lymphoma with numerous circulating lymphoma cells. Ann Diagn Pathol 2022; 58: 151934.CrossRefGoogle Scholar
Rajyaguru, DJ, Bhaskar, C, Borgert, AJ, Smith, A, Parsons, B. Intravascular large B-cell lymphoma in the United States (US): a population-based study using Surveillance, Epidemiology, and End Results program and National Cancer Database. Leukemia Lymphoma 2017; 58: 2080–8.CrossRefGoogle Scholar
Han, Y, Li, Q, Wang, D, Peng, L, Huang, T, Ou, C, Yang, K, Wang, J. Case report: intravascular large B-cell lymphoma: a clinicopathologic study of four cases with review of additional 331 cases in the literature. Front Oncol 2022; 12: 883141. doi: 10.3389/fonc.2022.883141.CrossRefGoogle ScholarPubMed
Geer, M, Roberts, E, Shango, M, et al. Multicentre retrospective study of intravascular large B-cell lymphoma treated at academic institutions within the United States. Br J Haematol 2019; 86: 255–62.Google Scholar
Rozenbaum, D, Tung, J, Xue, Y, Hoang, MP, Kroshinsky, D. Skin biopsy in the diagnosis of intravascular lymphoma: a retrospective diagnostic accuracy study. J Am Acad Dermatol 2021; 85: 665–70.CrossRefGoogle ScholarPubMed
Breakell, T, Waibel, H, Schliep, S, et al. Intravascular large B-cell lymphoma: a review with a focus on the prognostic value of skin involvement. Curr Oncol 2022; 29: 2909–19.CrossRefGoogle ScholarPubMed
Tanaka, M, Miyagaki, T, Okano, T, Takeuchi, S, Kadono, T. Predictive factors and scoring system for intravascular large B-cell lymphoma among suspected cases: a single-center retrospective analysis. Int J Dermatol 2024; 63: 7984.CrossRefGoogle ScholarPubMed
Murase, T, Yamaguchi, M, Suzuki, R, et al. Intravascular large B-cell lymphoma (IVLBCL): a clinicopahologic study of 96 cases with special reference to the immunophenotypic heterogeneity of CD5. Blood 2007; 109: 895902.CrossRefGoogle Scholar
Ferry, JA, Sohani, AR, Longtine, JA, Schwartz, RA, Harris, NL. HHV8-positive, EBV-positive Hodgkin lymphoma-like large B-cell lymphoma and HHV8-positive intravascular large B-cell lymphoma. Mod Pathol 2009; 22: 618–26.CrossRefGoogle ScholarPubMed
Sander, CA, Kaudewitz, P, Kutzner, H, et al. T-cell-rich B-cell lymphoma presenting in skin: a clinicopathologic analysis of six cases. J Cutan Pathol 1996; 23: 101–8.CrossRefGoogle ScholarPubMed
Achten, R, Verhoef, G, Vanuytsel, L, de Wolf-Peeters, C. T-cell/histiocyte-rich large B-cell lymphoma: a distinct clinicopathologic entity. J Clin Oncol 2002; 20: 1269–77.Google ScholarPubMed
Dunphy, CH, Nahass, GT. Primary cutaneous T-cell-rich B-cell lymphomas with flow cytometric immunophenotypic findings: report of 3 cases and review of the literature. Arch Pathol Lab Med 1999; 123: 1236–40.CrossRefGoogle ScholarPubMed
Hoeller, S, Tzankov, A, Pileri, SA, Went, P, Dirnhofer, S. Epstein-Barr virus-positive diffuse large B-cell lymphoma in elderly patients is rare in Western populations. Hum Pathol 2010; 41: 352–7.CrossRefGoogle ScholarPubMed
Oyama, T, Ichimura, K, Suzuki, R, et al. Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol 2003; 27: 1626.CrossRefGoogle ScholarPubMed
Uccini, S, Al-Jadiry, MF, Scarpino, S, et al. Epstein-Barr virus-positive diffuse large B-cell lymphoma in children: a disease reminiscent of Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly. Hum Pathol 2015; 46: 716–24.CrossRefGoogle ScholarPubMed
Gibson, SE, Hsi, ED. Epstein-Barr virus-positive B-cell lymphoma of the elderly at a United States tertiary medical center: an uncommon aggressive lymphoma with a nongerminal center B-cell phenotype. Hum Pathol 2009; 40: 653–61.CrossRefGoogle Scholar
Nicolae, A, Pittaluga, S, Abdullah, S, et al. EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood 2015; 126: 863–72.CrossRefGoogle Scholar
Batuello, C, Mason, EF. Diagnostic utility of CD200 immunohistochemistry in distinguishing EBV-positive large B-cell lymphoma from classic Hodgkin lymphoma. Am J Clin Pathol 2023; 160: 284–91.CrossRefGoogle ScholarPubMed
Morscio, J, Dierickx, D, Nijs, J, et al. Clinicopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: single-center series of 25 cases and meta-analysis of 277 reported cases. Am J Surg Pathol 2014; 38: 875–86.CrossRefGoogle ScholarPubMed
Gilaberte, M, Gallardo, F, Bellosillo, B, et al. Recurrent and self-healing cutaneous monoclonal plasmablastic infiltrates in a patient with AIDS and Kaposi sarcoma. Br J Dermatol 2005; 153: 828–32.CrossRefGoogle Scholar
Castillo, JJ, Bibas, M, Roberto, N Miranda, RN. The biology and treatment of plasmablastic lymphoma. Blood 2015; 125: 2323–30.CrossRefGoogle ScholarPubMed
Delecluse, HJ, Anagnostopoulos, I, Dallenbach, F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood 1997; 89: 1413–20.CrossRefGoogle ScholarPubMed
Liu, W, Lacouture, ME, Jiang, J, et al. KSHV/HHV8-associated primary cutaneous plasmablastic lymphoma in a patient with Castleman’s disease and Kaposi’s sarcoma. J Cutan Pathol 2006; 33: 4651.CrossRefGoogle Scholar
Garcia-Reyero, J, Magunacelaya, NM, de Villambrosia, SG, et al. Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plasmablastic lymphoma. Haematologica 2021; 106: 1120–8.Google ScholarPubMed
Loghavi, S, Alayed, K, Aladily, TN, et al. Stage, age, and EBV status impact outcomes of plasmablastic lymphoma patients: a clinicopathologic analysis of 61 patients. J Hematol Oncol 2015: 8: 65.CrossRefGoogle ScholarPubMed
Frontzek, F, Staiger, AM, Zapukhlyak, M, et al. Molecular and functional profiling identifies therapeutically targetable vulnerabilities in plasmablastic lymphoma. Nat Commun 2021; 12: 5183. doi: 10.1038/s41467-021-25405-w.CrossRefGoogle ScholarPubMed
Sen, F, Medeiros, LJ, Lu, D, Lai, R, Katz, R, Abruzzo, LV. Mantle cell lymphoma involving skin: cutaneous lesions may be the first manifestation of disease and tumors often have blastoid cytologic features. Am J Surg Pathol 2002; 26: 1312–18.CrossRefGoogle ScholarPubMed
Sander, B, Quintanilla-Martinez, L, Ott, G, et al. Mantle cell lymphoma: a spectrum from indolent to aggressive disease. Virchows Arch 2016; 468: 245–57.CrossRefGoogle ScholarPubMed
Fried, LJ, Criscito, MC, Stevenson, ML, Pomeranz, MK. Chronic lymphocytic leukemia and the skin: implications for the dermatologist. Int J Dermatol 2022; 61: 519–31.CrossRefGoogle ScholarPubMed
Menter, T, Trivedi, P, Ahmad, R, et al. Diagnostic utility of lymphoid enhancer binding factor 1 immunohistochemistry in small B-cell lymphomas. Am J Clin Pathol 2017; 147: 292300.Google ScholarPubMed
Rodriguez-Pinilla, SM, Ortiz-Romero, PL, et al. TCR-gamma expression in primary cutaneous T-cell lymphomas. Am J Surg Pathol 2016; 37: 375–84.Google Scholar
Falini, B, Flenghi, L, Pileri, S, et al. Distribution of T cells bearing different forms of the T cell receptor gamma/delta in normal and pathological human tissues. J Immunol 1989; 143: 2480–8.CrossRefGoogle Scholar
Zackheim, HS, Amin, S, Kashani-Sabet, M, McMillan, A. Prognosis in cutaneous T-cell lymphoma by skin stage: long-term survival in 489 patients. J Am Acad Dermatol 1999; 40: 418–25.CrossRefGoogle ScholarPubMed
Quaglino, P, Pimpinelli, N, Berti, E, et al; Gruppo Italiano Linfomi Cutanei. Time course, clinical pathways, and long-term hazards risk trends of disease progression in patients with classic mycosis fungoides: a multicenter, retrospective follow-up study from the Italian Group of Cutaneous Lymphomas. Cancer 2012; 118: 5830–9.CrossRefGoogle ScholarPubMed
Saleh, JS, Subtil, A, Hristov, AC. Primary cutaneous T-cell lymphoma: a review of the most common entities with focus on recent updates. Hum Pathol 2023; 138: 76102.CrossRefGoogle ScholarPubMed
Vonderheid, EC, Pavlov, I, Delgado, JC, et al. Prognostic factors and risk stratification in early mycosis fungoides. Leuk Lymphoma 2014; 55: 4450.CrossRefGoogle ScholarPubMed
Merrill, ED, Agbay, R, Miranda, RN, et al. Primary cutaneous T-cell lymphomas showing gamma-delta (gamma delta) phenotype and predominantly epidermotropic pattern are clinicopathologically distinct from classic primary cutaneous gamma delta T-cell lymphomas. Am J Surg Pathol 2017; 41: 204–15.CrossRefGoogle Scholar
Daniels, J, Doukas, PG, Escala, MEM, et al. Cellular origins and genetic landscape of cutaneous gamma delta T cell lymphomas. Nat Commun 2020; 11: 1806. doi: 10.1038/s41467-020-15572-7.CrossRefGoogle ScholarPubMed
Guitart, J, Chung, C, Torres-Cabala, CA. The dilemma of primary gamma delta epidermotropic T-cell lymphoma: distinction from mycosis fungoides, signs of cytotoxicity, and need for more detailed analysis. J Cutan Pathol 2022; 49: 419–20.CrossRefGoogle Scholar
Lee, SC, Berg, KD, Racke, FK, Griffin, CA, Eshleman, JR. Pseudo-spikes are common in histologically benign lymphoid tissues. J Mol Diagn 2000; 2: 145–52.CrossRefGoogle ScholarPubMed
Posnett, DN, Sinha, R, Kabak, S, Russo, C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy.” J Exp Med 1994; 179: 609–18.CrossRefGoogle Scholar
Scarisbrick, JJ, Hodak, E, Bagot, M, et al. Blood classification and blood response criteria in mycosis fungoides and Sézary syndrome using flow cytometry: recommendations from the EORTC cutaneous lymphoma task force. Eur J Cancer 2018: 93: 4756.CrossRefGoogle ScholarPubMed
Cerroni, L, Fink-Puches, R, Back, B, Kerl, H. Follicular mucinosis: a critical reappraisal of clinicopathologic features and association with mycosis fungoides and Sezary syndrome. Arch Dermatol 2002; 138: 182–9.CrossRefGoogle ScholarPubMed
van Santen, S, Jansen, PM, Quint, KD, Vermeer, MH, Willemze, R. Plaque stage folliculotropic mycosis fungoides: histopathologic features and prognostic factors in a series of 40 patients. J Cutan Pathol 2020; 47: 241–50.CrossRefGoogle Scholar
Charli-Joseph, Y, Kashani-Sabet, M, McCalmont, TH, et al. Association of a proposed new staging system for folliculotropic mycosis fungoides with prognostic variables in a US cohort. JAMA Dermatol 2021; 157: 157–65.CrossRefGoogle Scholar
Pileri, A, Facchetti, F, Rutten, A, et al. Syringotropic mycosis fungoides: a rare variant of the disease with peculiar clinicopathologic features. Am J Surg Pathol 2011; 35: 100–9.CrossRefGoogle ScholarPubMed
Haghighi, B, Smoller, BR, LeBoit, PE, Warnke, RA, Sander, CA, Kohler, S. Pagetoid reticulosis (Woringer-Kolopp disease): an immunophenotypic, molecular, and clinicopathologic study. Mod Pathol 2000; 13: 502–10.CrossRefGoogle ScholarPubMed
El Shabrawi-Caelen, L, Cerroni, L, Medeiros, LJ, McCalmont, TH. Hypopigmented mycosis fungoides: frequent expression of a CD8 T-cell phenotype. Am J Surg Pathol 2002; 26: 450–7.CrossRefGoogle ScholarPubMed
Shah, A, Safaya, A. Granulomatous slack skin disease: a review in comparison with mycosis fungoides. J Eur Acad Dermatol Venereol 2012; 26: 1472–8.CrossRefGoogle ScholarPubMed
Kempf, W, Ostheeren-Michaelis, S, Paulli, M, et al. Granulomatous mycosis fungoides and granulomatous slack skin: a multicenter study of the cutaneous lymphoma histopathology task force group of the European organization for research and treatment of cancer (EORTC). Arch Dermatol 2008; 144: 1609–17.CrossRefGoogle ScholarPubMed
Battesti, G, Ram-Wolff, C, Dobos, G, et al. Granulomatous slack skin: clinical retrospective study of 8 cases of the Cutaneous Lymphoma French Study Group. Eur J Cancer 2021; 156: S35-6.CrossRefGoogle ScholarPubMed
Benner, MA, Jansen, PM, Vermeer, MH, et al. Prognostic factors in transformed mycosis fungoides: a retrospective analysis of 100 cases. Blood 2012; 119: 1643–9.CrossRefGoogle ScholarPubMed
Vergier, B, De Muret, A, Beylot-Barry, M, et al. Transformation of mycosis fungoides: clinicopathologic and prognostic features of 45 cases. Blood 2009; 95: 2212–18.Google Scholar
Jullié, ML, Carlotti, M, Vivot, A Jr, et al. CD20 antigen may be expressed by reactive or lymphomatous cells of transformed mycosis fungoides: diagnostic and prognostic impact. Am J Surg Pathol 2013; 37: 1845–54.CrossRefGoogle ScholarPubMed
Klemke, CD, Booken, N, Weiss, C, et al. Histopathological and immunophenotypical criteria for the diagnosis of Sezary syndrome in differentiation from other erythrodermic skin diseases: a European Organisation for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Task Force Study of 97 cases. Br J Dermatol 2015; 173: 93105.CrossRefGoogle ScholarPubMed
Cetinozman, F, Jansen, PM, Vermeer, MH, et al. Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol 2012; 148: 1379–85.CrossRefGoogle ScholarPubMed
Capriotti, E, Vonderheid, EC, Thoburn, CJ, Wasik, MA, Bahler, DW, Hess, AD. Expression of T-plastin, FoxP3 and other tumor-associated markers by leukemic T-cells of cutaneous T-cell lymphoma. Leuk Lymphoma 2008; 49: 1190–201.CrossRefGoogle ScholarPubMed
Gros, A, Laharanne, E, Vergier, M, et al. TP53 alterations in primary and secondary Sezary syndrome: a diagnostic tool for the assessment of malignancy in patients with erythroderma. PLoS One 2017; 12: e0173171. doi: 10.1371/journal.pone.0173171.CrossRefGoogle ScholarPubMed
Goodlad, JR, Cerroni, L, Swerdlow, SH. Recent advances in cutaneous lymphoma-implications for current and future classifications. Virchows Arch 2023; 482: 281–98.CrossRefGoogle ScholarPubMed
Dobos, G, de Masson, A, Ram-Wolff, C, et al. Epidemiological changes in cutaneous lymphomas: an analysis of 8593 patients from the French Cutaneous Lymphoma Registry. Br J Dermatol 2021; 184: 1059–67.CrossRefGoogle ScholarPubMed
Bekkenk, MW, Geelen, FA, van Voorst Vader, PC, et al. Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood 2000; 95: 3653–61.CrossRefGoogle Scholar
Sciallis, AP, Law, ME, Inwards, DJ, et al. Mucosal CD30-positive T-cell lymphoproliferations of the head and neck show a clinicopathologic spectrum similar to cutaneous CD30-positive T-cell lymphoproliferative disorders. Mod Pathol 2012; 25: 983–92.CrossRefGoogle ScholarPubMed
Melchers, RC, Willemze, R, Bekkenk, MW, et al. Frequency and prognosis of associated malignancies in 504 patients with lymphomatoid papulosis. J Eur Acad Dermatol Venereol 2020; 34: 260–6.CrossRefGoogle ScholarPubMed
El Shabrawi-Caelen, L, Kerl, H, Cerroni, L. Lymphomatoid papulosis: reappraisal of clinicopathologic presentation and classification into subtypes A, B, and C. Arch Dermatol 2004; 140: 441–7.CrossRefGoogle ScholarPubMed
Saggini, A, Gulia, A, Argenyi, Z, et al. A variant of lymphomatoid papulosis simulating primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma. Description of 9 cases. Am J Surg Pathol 2010; 34: 1168–75.CrossRefGoogle ScholarPubMed
Sharaf, MA, Romanelli, P, Kirsner, R, Miteva, M. Angioinvasive lymphomatoid papulosis: another case of a newly described variant. Am J Dermatopathol 2014; 36: e7577.CrossRefGoogle ScholarPubMed
Karai, LJ, Kadin, ME, Hsi, ED, et al. Chromosomal rearrangements of 6p25.3 define a new subtype of lymphomatoid papulosis. Am J Surg Pathol 2013; 37: 1173–81.CrossRefGoogle ScholarPubMed
Feldman, AL, Oishi, N, Ketterling, RP, Ansell, SM, Shi, M, Dasari, S. Immunohistochemical approach to genetic subtyping of anaplastic large cell lymphoma. Am J Surg Pathol 2022; 46: 1490–9.CrossRefGoogle ScholarPubMed
Kempf, W, Mitteldorf, C, Karai, LJ, Robson, A. Lymphomatoid papulosis – making sense of the alphabet soup: a proposal to simplify terminology. J Dtsch Dermatol Ges 2017; 15: 390–4.CrossRefGoogle ScholarPubMed
Smoller, BR, Longacre, TA, Warnke, RA. Ki-1 (CD30) expression in differentiation of lymphomatoid papulosis from arthropod bite reactions. Mod Pathol 1992; 5: 492–6.Google ScholarPubMed
Werner, B, Massone, C, Kerl, H, Cerroni, L. Large CD30-positive cells in benign, atypical lymphoid infiltrates of the skin. J Cutan Pathol 2008; 35: 1100–7.CrossRefGoogle ScholarPubMed
Kempf, W, Kazakov, DV, Palmedo, G, Fraitag, S, Schaerer, L, Kutzner, H. Pityriasis lichenoides et varioliformis acuta with numerous CD30(+) cells: a variant mimicking lymphomatoid papulosis and other cutaneous lymphomas. A clinicopathologic, immunohistochemical, and molecular biological study of 13 cases. Am J Surg Pathol 2012; 36: 1021–9.CrossRefGoogle Scholar
Kempf, W. CD30+ lymphoproliferative disorders: histopathology, differential diagnosis, new variants, and simulators. J Cutan Pathol 2006; 33: 5870.CrossRefGoogle ScholarPubMed
Kempf, W, Kutzner, H, Cozzio, A, et al. MUM1 expression in cutaneous CD30+ lymphoproliferative disorders: a valuable tool for the distinction between lymphomatoid papulosis and primary cutaneous anaplastic large-cell lymphoma. Br J Dermatol 2008; 158: 1280–7.CrossRefGoogle ScholarPubMed
Kempf, W, Pfaltz, K, Vermeer, MH, et al. EORTC, ISCL, and USCLC consensus recommendations for the treatment of primary cutaneous CD30-positive lymphoproliferative disorders: lymphomatoid papulosis and primary cutaneous anaplastic large-cell lymphoma. Blood 2011; 118: 4024–35.CrossRefGoogle ScholarPubMed
Massone, C, Cerroni, L. Phenotypic variability in primary cutaneous anaplastic large T-cell lymphoma: a study on 35 patients. Am J Dermatopathol 2014; 36: 153–7.CrossRefGoogle Scholar
Kaimi, Y, Takahashi, Y, Taniguchi, H, et al. Loss of or decrease in CD30 expression in four patients with anaplastic large cell lymphoma after brentuximab vedotin-containing therapy. Virchows Arch 2024; 484: 465–73.CrossRefGoogle ScholarPubMed
ten Berge, RL, Oudejans, JJ, Ossenkoppele, GJ, et al. ALK expression in extranodal anaplastic large cell lymphoma favours systemic disease with (primary) nodal involvement and a good prognosis and occurs before dissemination. J Clin Pathol 2000; 53: 445–50.Google Scholar
Oschlies, I, Lisfeld, J, Lamant, L, et al. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases: a report from the ALCL99 study. Haematologica 2013; 98: 50–6.CrossRefGoogle Scholar
Miyagaki, T, Inoue, N, Kamijo, H, et al. Prognostic factors for primary cutaneous anaplastic large-cell lymphoma: a multicentre retrospective study from Japan. Br J Dermatol 2023; 189: 612–20.CrossRefGoogle ScholarPubMed
de la Pinta FJ, Díaz, Rodríguez Moreno, M, Salgado, RN, et al. Anaplastic large cell lymphomas with the 6p25.3 rearrangement are a heterogeneous group of tumours with a diverse molecular background. Hum Pathol 2023; 137: 71–8.Google Scholar
de Bruin PC, Beljaards, RC van Heerde, P, et al. Differences in clinical behaviour and immunophenotype between primary cutaneous and primary nodal anaplastic large cell lymphoma of T-cell or null cell phenotype. Histopathology 1993; 23: 127–35.Google Scholar
Ferrara, G, Ena, L, Cota, C, Cerroni, L. Intralymphatic spread is a common finding in cutaneous CD30+ lymphoproliferative disorders. Am J Surg Pathol 2015; 39: 1511–17.CrossRefGoogle ScholarPubMed
Samols, MA, Su, A, Ra, S, Cappel, MA, et al. Intralymphatic cutaneous anaplastic large cell lymphoma/lymphomatoid papulosis: expanding the spectrum of CD30-positive lymphoproliferative disorders. Am J Surg Pathol 2014; 38: 1203–11.CrossRefGoogle ScholarPubMed
Lai, P, Liu, F, Liu, X, Sun, J, Wang, Y. Differential molecular programs of cutaneous anaplastic large cell lymphoma and CD30-positive transformed mycosis fungoides. Front Immunol 2023; 14: 1270365. doi: 10.3389/fimmu.2023.1270365.CrossRefGoogle ScholarPubMed
Banafshay, K, Maldonado, D, Tarbox, M. Cutaneous intravascular CD-30-positive anaplastic large cell lymphoma: a case report and literature review. Cureus 2023; 15: e44450.Google ScholarPubMed
Provasi, M, Bagnoli, F, Fanoni, D, et al. CD30 expression in a case of intravascular large B-cell lymphoma, cutaneous variant. J Cutan Pathol 2019; 46: 447–51.CrossRefGoogle Scholar
Kempf, W, Mitteldorf, C, Cerroni, L, et al. Classifications of cutaneous lymphomas and lymphoproliferative disorders: An update from the EORTC cutaneous lymphoma histopathology group. J Eur Acad Dermatol Venereol 2024; 38: 1491–503.CrossRefGoogle ScholarPubMed
Bekkenk, MW, Vermeer, MH, Jansen, PM, et al. Peripheral T-cell lymphomas unspecified presenting in the skin: analysis of prognostic factors in a group of 82 patients. Blood 2003; 102: 2213–19.CrossRefGoogle Scholar
Hagiwara, M, Takata, K, Shimoyama, Y, et al. Primary cutaneous T-cell lymphoma of unspecified type with cytotoxic phenotype: clinicopathological analysis of 27 patients. Cancer Sci 2009; 100: 3341.CrossRefGoogle ScholarPubMed
Savage, KJ, Ferreri, AJ, Zinzani, PL, Pilari, SA. Peripheral T-cell lymphoma- not otherwise specified. Crit Rev Oncol Hematol 2011; 79: 321–9.CrossRefGoogle Scholar
Kempf, W, Mitteldorf, C, Battistella, M, et al. Primary cutaneous peripheral T-cell lymphoma, not otherwise specified: results of a multicentre European Organization for Research and Treatment of Cancer (EORTC) cutaneous lymphoma taskforce study on the clinico-pathological and prognostic features. J Eur Acad Dermatol Venereol 2021; 35: 658–68.CrossRefGoogle ScholarPubMed
Willemze, R, Jansen, PM, Cerroni, L, et al. Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood 2008; 111: 838–45.CrossRefGoogle Scholar
Bosisio, F, Boi, S, Caputo, V, et al. Lobular panniculitic infiltrates with overlapping histopathologic features of lupus panniculitis (lupus profundus) and subcutaneous T-cell lymphoma: a conceptual and practical dilemma. Am J Surg Pathol 2015; 39: 206–11.CrossRefGoogle ScholarPubMed
Magro, CM, Schaefer, JT, Morrison, C, Porcu, P. Atypical lymphocytic lobular panniculitis: a clonal subcutaneous T-cell dyscrasia. J Cutan Pathol 2008; 35: 947–54.CrossRefGoogle ScholarPubMed
Machan, S, Rodriguez, M, Alonso-Alonso, R, et al. Subcutaneous panniculitis-like T-cell lymphoma, lupus erythematosus profundus, and overlapping cases: molecular characterization through the study of 208 genes. Leuk Lymphoma 2021; 62: 2130–40.CrossRefGoogle Scholar
LeBlanc, RE, Tavallaee, M, Kim, YH, Kim, J. Useful parameters for distinguishing subcutaneous panniculitis-like T-Cell lymphoma from lupus erythematosus panniculitis. Am J Surg Pathol 2016; 40: 745–54.CrossRefGoogle ScholarPubMed
Koh, J, Jang, I, Mun, S, et al. Genetic profiles of subcutaneous panniculitis-like T-cell lymphoma and clinicopathological impact of HAVCR2 mutations. Blood Adv 2021; 5: 3919–30.CrossRefGoogle ScholarPubMed
Salhany, KE, Macon, WR, Choi, JK, et al. Subcutaneous panniculitis-like T cell lymphoma: clinicopathologic, immunophenotypic, and genotypic analysis of alpha/beta and gamma/delta subtypes. Am J Surg Pathol 1998; 22: 881–93.CrossRefGoogle ScholarPubMed
Torres-Cabala, CA, Huen, A, Iyer, SP, Miranda, RN. Gamma/delta phenotype in primary cutaneous T-cell lymphomas and lymphoid proliferations: challenges for diagnosis and classification. Surg Pathol Clin 2021; 14: 177–94.CrossRefGoogle ScholarPubMed
Endly, DC, Weenig, RH, Peters, MS, Viswanatha, DS, Comfere, NI. Indolent course of cutaneous gamma-delta T-cell lymphoma. J Cutan Pathol 2013; 40: 896902.CrossRefGoogle ScholarPubMed
Guitart, J, Weisenburger, DD, Subtil, A, et al. Cutaneous gamma/delta T-cell lymphomas. A spectrum of presentations with overlap with other cytotoxic lymphomas. Am J Surg Pathol 2012; 36: 1656–65.CrossRefGoogle ScholarPubMed
Toro, JR, Beaty, M, Sorbara, L, et al. Gamma delta T-cell lymphoma of the skin: a clinical, microscopic, and molecular study. Arch Dermatol 2000; 136: 1024–32.CrossRefGoogle ScholarPubMed
Rodriguez-Pinilla, SM, Ortiz-Romero, PL, Monsalvez, V, et al. TCR-gamma expression in primary cutaneous T-cell lymphomas. Am J Surg Pathol 2013; 37: 375–84.CrossRefGoogle ScholarPubMed
Berti, E, Tomasini, D, Vermeer, MH, Meijer, CJLM, Alessi, E, Willemze, R. Primary cutaneous CD8-positive epidermotropic cytotoxic T cell lymphomas: a distinct clinicopathological entity with an aggressive clinical behavior. Am J Pathol 1999; 155: 483–92.CrossRefGoogle ScholarPubMed
Robson, A, Assaf, C, Bagot, M, et al. Aggressive epidermotropic cutaneous CD8+ lymphoma: a cutaneous lymphoma with distinct clinical and pathological features. Report of an EORTC Cutaneous Lymphoma Task Force Workshop. Histopathology 2015; 67: 425–41.CrossRefGoogle ScholarPubMed
Lee, K, Evans, MG, Yang, L, et al. Primary cytotoxic T-cell lymphomas harbor recurrent targetable alterations in the JAK-STAT pathway. Blood 2021; 138: 2435–40.Google ScholarPubMed
Bastidas Torres, AN, Cats, D, Out-Luiting, JJ, et al Deregulation of JAK2 signaling underlies primary cutaneous CD8(+) aggressive epidermotropic cytotoxic T-cell lymphoma. Haematologica 2022; 107: 702–14.Google ScholarPubMed
Petrella, T, Maubec, E, Cornillet-Lefebvre, P, et al. Indolent CD8-positive lymphoid proliferation of the ear: a distinct primary cutaneous T-cell lymphoma? Am J Surg Pathol 2007; 31: 1887–92.CrossRefGoogle Scholar
Greenblatt, D, Ally, M, Child, F, et al. Indolent CD8+ lymphoid proliferation of acral sites: a clinicopathologic study of six patients with some atypical features. J Cutan Pathol 2013; 40: 248–58.CrossRefGoogle Scholar
Wobser, M, Petrella, T, Kneitz, H, et al. Extrafacial indolent CD8-positive cutaneous lymphoid proliferation with unusual symmetrical presentation involving both feet. J Cutan Pathol 2013; 40: 955–61.CrossRefGoogle ScholarPubMed
Hagen, JW, Magro, CM. Indolent CD8+ lymphoid proliferation of the face with eyelid involvement. Am J Dermatopathol 2014; 36: 137–41.CrossRefGoogle ScholarPubMed
Alaggio, R, Amador, C, Anagnostopoulos, I, et al. The 5th edition of the World Health Organization classification of hematolymphoid tumors: lymphoid neoplasms. Leukemia 2022; 36: 1720–48.CrossRefGoogle Scholar
Campo, E, Jaffe, ES, Cook, JR, et al. The International Consensus Classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee. Blood 2022; 140: 1229–53.CrossRefGoogle ScholarPubMed
Beltraminelli, H, Mullegger, R, Cerroni, L. Indolent CD8+ lymphoid proliferation of the ear: a phenotypic variant of the small-medium pleomorphic cutaneous T-cell lymphoma? J Cutan Pathol 2010; 37: 81–4.CrossRefGoogle Scholar
Kempf, W, Petrella, T, Willemze, R, et al. Clinical, histopathological and prognostic features of primary cutaneous acral CD8+T-cell lymphoma and other dermal CD8+cutaneous lymphoproliferations: results of an EORTC Cutaneous Lymphoma Group workshop. Br J Dermatol 2022; 186: 887–97.CrossRefGoogle ScholarPubMed
Li, JY, Guitart, J, Pulitzer, MP, et al. Multicenter case series of indolent small/medium-sized CD8+ lymphoid proliferations with predilection for the ear and face. Am J Dermatopathol 2014; 36: 402–8.CrossRefGoogle ScholarPubMed
Wobser, M, Roth, S, Reinartz, T, Rosenwald, A, Goebeler, M, Geissinger, E. CD68 expression is a discriminative feature of indolent cutaneous CD8-positive lymphoid proliferation and distinguishes this lymphoma subtype from other CD8-positive cutaneouslymphomas. Br J Dermatol 2015; 172: 1573–80.CrossRefGoogle Scholar
Beltraminelli, H, Leinweber, B, Kerl, H, Cerroni, L. Primary cutaneous CD4+ small/medium-sized pleomorphic T cell lymphoma: a cutaneous nodular proliferation of pleomorphic T lymphocytes of undetermined significance? A study of 136 cases. Am J Dermatopathol 2009; 31: 317–22.CrossRefGoogle ScholarPubMed
William, VL, Torres-Cabala, CA, Duvic, M. Primary cutaneous small- to medium-sized CD4+ pleomorphic T-cell lymphoma: a retrospective case series and review of the provisional cutaneous lymphoma category. Am J Clin Dermatol 2011; 12: 389401.Google Scholar
Beltzung, F, Ortonne, N, Pelletier, L, et al. Primary cutaneous CD4+small/medium T-cell lymphoproliferative disorders: a clinical, patho logic and molecular study of 60 cases presenting with a single lesion:a multicenter study of the French Cutaneous Lymphoma Study Group. Am J Surg Pathol 2020; 44: 862–72.CrossRefGoogle Scholar
Rodriguez-Pinilla, SM, Roncador, G, Rodriguez-Peralto, IJ, et al. Primary cutaneous CD4+ small/medium-sized pleomorphic T-cell lymphoma expresses follicular T-cell markers. Am J Surg Pathol 2009; 33: 8190.CrossRefGoogle ScholarPubMed
Oschlies, I, Kock, K, Wuseke, T, et al. Cyclin D1 expression, cell proliferation, and clonal persistence characterize primary cutaneous CD4+ small or medium T-cell lymphoproliferative disorder. Histopathology 2023; 82: 485–94.CrossRefGoogle ScholarPubMed
Obiorah, IE, Karrs, J, Brown, L, et al. Overlapping features of primary cutaneous marginal zone lymphoproliferative disorder and primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder: a diagnostic challenge examined by genomic analysis. Am J Surg Pathol 2022. Am J Surg Pathol 2023; 47: 344–53.CrossRefGoogle ScholarPubMed
Suzuki, R, Suzumiya, J, Yamaguchi, M, et al. Prognostic factors for mature natural killer (NK) cell neoplasms: aggressive NK cell leukemia and extranodal NK cell lymphoma, nasal type. Ann Oncol 2010; 21: 1032–40.CrossRefGoogle ScholarPubMed
Takata, K, Hong, ME, Sitthinamsuwan, P, et al. Primary cutaneous NK/T-cell lymphoma, nasal type and CD56-positive peripheral T-cell lymphoma: a cellular lineage and clinicopathologic study of 60 patients from Asia. Am J Surg Pathol 2015; 39: 112.CrossRefGoogle ScholarPubMed
Lee, WJ, Jung, JM, Won, CH, et al. Cutaneous extranodal natural killer/T-cell lymphoma: a comparative clinicohistopathologic and survival outcome analysis of 45 cases according to the primary tumor site. J Am Acad Dermatol 2014; 70: 1002–9.CrossRefGoogle Scholar
Stoll, JR, Willner, J, Oh, Y, et al. Primary cutaneous T-cell lymphomas other than mycosis fungoides and Sézary syndrome. Part I: clinical and histologic features and diagnosis. J Am Acad Dermatol 2021; 85: 1073–90.CrossRefGoogle ScholarPubMed
Ngamdamrongkiat, P, Sukpanichnant, S, Chairatchaneeboon, M, Khuhapinant, A, Sitthinamsuwan, P. Cutaneous involvement of extranodal NK/T cell lymphoma, nasal type, a clinical and histopathological mimicker of various skin diseases. Dermatopathology 2022; 9: 307–20.CrossRefGoogle ScholarPubMed
Plaza, JA, Gru, AA, Sangueza, OP, et al. An update on viral-induced cutaneous lymphoproliferative disorders. CME Part I. J Am Acad Dermatol 2023; 88: 965–80.CrossRefGoogle ScholarPubMed
Gualco, G, Domeny-Duarte, P, Chioato, L, et al. Clinicopathologic and molecular features of 122 Brazilian cases of nodal and extranodal NK/T-cell lymphoma, nasal type, with EBV subtyping analysis. Am J Surg Pathol 2011; 35: 1195–203.CrossRefGoogle ScholarPubMed
Schwartz, EJ, Molina-Kirsch, H, Zhao, S, et al. Immunohistochemical characterization of nasal-type extranodal NK/T-cell lymphoma using a tissue microarray: an analysis of 84 cases. Am J Clin Pathol 2008; 130: 343–51.CrossRefGoogle ScholarPubMed
Ohno, T, Yamaguchi, M, Oka, K, Miwa, H, Kita, H, Shirakawa, S. Frequent expression of CD3 epsilon in CD3 (Leu 4)-negative nasal T-cell lymphoma. Leukemia 1995; 9: 4452.Google Scholar
Kawamoto, K, Miyoshi, H, Suzuki, T, et al. Frequent expression of CD30 in extranodal NK/T-cell lymphoma: Potential therapeutic target for anti-CD30 antibody-based therapy. Hematol Oncol 2018; 36: 166–73.CrossRefGoogle ScholarPubMed
Marshall, EH, Brumbaugh, B, Holt, A, Chen, ST, Hoang, MP. Cutaneous intravascular hematolymphoid entities: a review. Diagnostics 2024; 14: 679. doi: 10.3390/diagnostics14070679.CrossRefGoogle ScholarPubMed
Na, JM, Jung, W, Kim, M, et al. Intravascular NK/T-cell lymphoma: a case report and literature review. J Pathol Transl Med 2023; 57: 332–6.CrossRefGoogle ScholarPubMed
Fujikura, K, Yoshida, M, Uesaka, K. Transcriptome complexity in intravascular NK/T-cell lymphoma. J Clin Pathol 2020; 73: 671–5.CrossRefGoogle ScholarPubMed
Marchetti, MA, Pulitzer, MP, Myskowski, PL, et al. Cutaneous manifestations of human T-cell lymphotrophic virus type-1-associated adult T-cell leukemia/lymphoma: a single-center, retrospective study. J Am Acad Dermatol 2015; 72: 293301.CrossRefGoogle ScholarPubMed
Malpica, L, Enriquez, DJ, Castro, DA, et al. Real-world data on adult T-cell leukemia/lymphoma in Latin America: a study from the Grupo de Estudio Latinoamericano de Linfoproliferativos. JCO Glob Oncol 2021: 7: 1151–66.Google ScholarPubMed
Tokura, Y, Sawada, Y, Shimauchi, T. Skin manifestations of adult T-cell leukemia/lymphoma: clinical, cytological and immunological features. J Dermatol 2014; 41: 1925.CrossRefGoogle ScholarPubMed
Sawada, Y, Hino, R, Hama, K, et al. Type of skin eruption is an independent prognostic indicator for adult T-cell leukemia/lymphoma. Blood 2011; 117: 3961–7.CrossRefGoogle Scholar
Kobayashi, S, Nakano, K, Watanabe, E, et al. CADM1 expression and stepwise downregulation of CD7 are closely associated with clonal expansion of HTLV-I-infected cells in adult T-cell leukemia/lymphoma. Clin Cancer Res 2014; 20: 2851–61.CrossRefGoogle ScholarPubMed
Takatori, M, Sakihama, S, Miyara, M, et al. A new diagnostic algorithm using biopsy specimens in adult T-cell leukemia/lymphoma: combination of RNA in situ hybridization and quantitative PCR for HTLV-1. Mod Pathol 2021; 34: 51–8.CrossRefGoogle ScholarPubMed
Yamada, K, Miyoshi, H, Yoshida, N, et al. Human T-cell lymphotropic virus HBZ and tax mRNA expression are associated with specific clinicopathological features in adult T-cell leukemia/lymphoma. Mod Pathol 2021; 34: 314–26.CrossRefGoogle ScholarPubMed
Botros, N, Cerroni, L, Shawwa, A, et al. Cutaneous manifestations of angioimmunoblastic T-cell lymphoma: clinical and pathological characteristics. Am J Dermatopathol 2015; 37: 274–83.CrossRefGoogle ScholarPubMed
Oishi, N, Sartori-Valinotti, JC, Bennani, NN, et al. Cutaneous lesions of angioimmunoblastic T-cell lymphoma: Clinical, pathological, and immunophenotypic features. J Cutan Pathol 2019; 46: 637–44.CrossRefGoogle ScholarPubMed
Yu, H, Shahsafaei, A, Dorfman, DM. Germinal-center T-helper-cell markers PD-1 and CXCL13 are both expressed by neoplastic cells in angioimmunoblastic T-cell lymphoma. Am J Clin Pathol 2009; 131: 3341.CrossRefGoogle ScholarPubMed
Brown, HA, Macon, WR, Kurtin, PJ, Gibson, LE. Cutaneous involvement by angioimmunoblastic T-cell lymphoma with remarkable heterogeneous Epstein-Barr virus expression. J Cutan Pathol 2001; 28: 432–8.CrossRefGoogle ScholarPubMed
Magana, M, Massone, C, Magana, P, Cerroni, L. Clinicopathologic features of hydroa vacciniforme-like lymphoma: a series of 9 patients. Am J Dermatopathol 2016; 38: 20–5.CrossRefGoogle ScholarPubMed
Liu, Y, Ma, C, Wang, G, Wang, L. Hydroa vacciniforme-like lymphoproliferative disorder: Clinicopathologic study of 41 cases. J Am Acad Dermatol 2019; 81: 534–40.CrossRefGoogle ScholarPubMed
Quintanilla-Martinez, L, Ridaura, C, Nagl, F, et al. Hydroa vacciniforme-like lymphoma: a chronic EBV+ lymphoproliferative disorder with risk to develop a systemic lymphoma. Blood 2013; 122: 3101–10.CrossRefGoogle ScholarPubMed
Miyake, T, Yamamoto, T, Hirai, Y, et al. Survival rates and prognostic factors of Epstein-Barr virus-associated hydroa vacciniforme and hypersensitivity to mosquito bites. Br J Dermatol 2015; 172: 5663.CrossRefGoogle ScholarPubMed
Rysgaard, CD, Stone, MS. Lymphomatoid granulomatosis presenting with cutaneous involvement: A case report and review of the literature. J Cutan Pathol 2015; 42: 188–93.CrossRefGoogle ScholarPubMed
Dojcinov, SD, Venkataraman, G, Raffeld, M, Pittaluga, S, Jaffe, ES. EBV positive mucocutaneous ulcer–a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol 2010; 34: 405–17.CrossRefGoogle ScholarPubMed
Satou, A, Banno, S, Kohno, K, et al. Primary cutaneous methotrexate-associated B-cell lymphoproliferative disorders other than EBV-positive mucocutaneous ulcer: clinical, pathological, and immunophenotypic features. Pathology 2021; 53: 595601.CrossRefGoogle ScholarPubMed
Ikeda, T, Gion, Y, Sakamoto, M, et al. Clinicopathological analysis of 34 Japanese patients with EBV-positive mucocutaneous ulcer. Mod Pathol 2020; 33: 2437–48.CrossRefGoogle ScholarPubMed
Sen, F, Medeiros, LJ, Lu, D, Lai, R, Katz, R, Abruzzo, LV. Mantle cell lymphoma involving skin: cutaneous lesions may be the first manifestation of disease and tumors often have blastoid cytologic features. Am J Surg Pathol 2002; 26: 1312–18.CrossRefGoogle ScholarPubMed
Soldini, D, Valera, A, Sole, C, et al. Assessment of Sox11 expression in routine lymphoma tissue sections: characterization of new monoclonal antibodies for diagnosis of mantle cell lymphoma. Am J Surg Pathol 2014; 38: 8693.CrossRefGoogle ScholarPubMed
Jares, P, Colomer, D, Campo, E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest 2012; 122: 3416–23.CrossRefGoogle ScholarPubMed
Salhany, KE, Sousar, JB, Greer, JP, Casey, TT, Fields, JP, Collins, RD. Transformation of cutaneous T cell lymphoma to large cell lymphoma. A clinicopathologic and immunologic study. Am J Pathol 1988; 132: 265–77.Google ScholarPubMed
Hussong, JW, Perkins, SL, Schnitzer, B, Hargreaves, H, Frizzera, G. Extramedullary plasmacytoma. A form of marginal zone cell lymphoma? Am J Clin Pathol 1999; 111: 111–16.CrossRefGoogle ScholarPubMed
Jurczyszyn, A, Olszewska-Szopa, M, Hundria, V, et al. Cutaneous involvement in multiple myeloma: a multi-institutional retrospective study of 53 patients. Leuk Lymphoma 2016; 57: 2071–6.CrossRefGoogle ScholarPubMed
Deshpande, V, Zen, Y, Chan, JK, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol 2012; 25: 1181–92.CrossRefGoogle ScholarPubMed
Deconinck, E, Petrella, T, Ottou, FG. Blastic plasmacytoid dendritic cell neoplasm: clinical presentation and diagnosis. Hematol Oncol Clin North Am 2020; 34: 491500.CrossRefGoogle ScholarPubMed
Julia, F, Dalle, S, Duru, G, et al. Blastic plasmacytoid dendritic cell neoplasms: clinico-immunohistochemical correlations in a series of 91 patients. Am J Surg Pathol 2014; 38: 673–80.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×