Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-6lqsf Total loading time: 0 Render date: 2025-06-18T20:07:12.906Z Has data issue: false hasContentIssue false

Chapter 3 - Epithelial or Squamous Neoplasms

Published online by Cambridge University Press:  17 June 2025

Mai P. Hoang
Affiliation:
Harvard Medical School, Boston
Get access

Summary

Being one of the most common cutaneous epithelial neoplasms and having a diverse morphologic appearance, squamous cell carcinoma can mimic a variety of neoplasms including epithelial, lymphoid, melanocytic as well as mesenchymal neoplasms of the skin. In this chapter, the role of immunohistochemistry in the distinction of squamous cell carcinoma versus basal cell carcinoma, sebaceous carcinoma, and porocarcinoma; sarcomatoid squamous cell carcinoma versus spindle cell melanomas and sarcomas; poorly differentiated squamous cell carcinoma versus Merkel cell carcinoma; and the diagnosis of anogenital squamous intraepithelial neoplasia will be discussed. Squamous precursors of the anogenital region arise via three pathways: classical which is associated with human papillomavirus (HPV) infection, usual or the differentiated or simplex pathway which is HPV-independent and caused by TP53 mutations, and a third pathway characterized by HPV-independence and p53 wild-type status. The role of immunostains in classifying anogenital squamous precursor lesions will be discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Kim, K, Kim, JW, Santos, I, Oakley, A. Body site locations of basal cell carcinoma, squamous cell carcinoma and actinic keratosis in patients referred to the Waikato District Health Board teledermoscopy clinic. J Prim Health Care 2022; 14: 80–6.CrossRefGoogle Scholar
Cassarino, DS, Derienzo, DP, Barr, RJ. Cutaneous squamous cell carcinoma: a comprehensive clinicopathologic classification. Part one. J Cutan Pathol 2006; 33: 191206.Google ScholarPubMed
Ross, AS, Whalen, FM, Elenitsas, R, Xu, X, Troxel, AB, Schmults, CD. Diameter of involved nerves predicts outcomes in cutaneous squamous cell carcinoma with perineural invasion: an investigator-blinded retrospective cohort study. Dermatol Surg 2009; 35: 1859–66.CrossRefGoogle ScholarPubMed
Henderson, SA, Torres-Cabala, CA, Curry, JL, et al. p40 is more specific than p63 for the distinction of atypical fibroxanthoma from other cutaneous spindle cell malignancies. Am J Surg Pathol 2014; 38: 1102–10.CrossRefGoogle ScholarPubMed
Sigel, JE, Skacel, M, Bergfeld, WF, House, NS, Rabkin, MS, Goldblum, JR. The utility of cytokeratin 5/6 in the recognition of cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol 2001; 28: 520–4.CrossRefGoogle ScholarPubMed
Mahalingam, M, Richards, JE, Selim, MA, Muzikansky, A, Hoang, MP. An immunohistochemical comparison of cytokeratin 7, cytokeratin 15, cytokeratin 19, CAM5.2, carcinoembryonic antigen, and nestin in differentiating porocarcinoma from squamous cell carcinoma. Hum Pathol 2012; 43: 1265–72.CrossRefGoogle Scholar
Heyderman, E, Graham, RM, Chapman, DV, Richardson, TC, McKee, PH. Epithelial markers in primary skin cancer: an immunoperoxidase study of the distribution of epithelial membrane antigen (EMA) and carcinoembryonic antigen (CEA) in 65 primary skin carcinomas. Histopathology 1984; 8: 423–34.CrossRefGoogle ScholarPubMed
Beer, TW, Shepherd, P, Theaker, JM. Ber-EP4 and epithelial membrane antigen aid distinction of basal cell, squamous cell and basosquamous carcinomas of the skin. Histopathology 2000; 37: 218–23.CrossRefGoogle ScholarPubMed
Hoang, MP, Dresser, KA, Kapur, P, High, WA, Mahalingam, M. Microcystic adnexal carcinoma: an immunohistochemical reappraisal. Mod Pathol 2008; 21: 178–85.CrossRefGoogle ScholarPubMed
Fan, YS, Carr, RA, Sanders, DS, Smith, AP, Lazar, AJ, Calonje, E. Characteristic Ber-EP4 and EMA expression in sebaceoma is immunohistochemically distinct from basal cell carcinoma. Histopathology 2007; 51: 80–6.CrossRefGoogle ScholarPubMed
Swanson, PE, Fitzpatrick, MM, Ritter, JH, Glusac, EJ, Wick, MR. Immunohistologic differential diagnosis of basal cell carcinoma, squamous cell carcinoma, and trichoepithelioma in small cutaneous biopsy specimens. J Cutan Pathol 1998; 25: 153–9.CrossRefGoogle ScholarPubMed
Pham, TT, Selim, MA, Burchette, JL Jr, Madden, J, Turner, J, Herman, C. CD10 expression in trichoepithelioma and basal cell carcinoma. J Cutan Pathol 2006; 33: 123–8.CrossRefGoogle ScholarPubMed
Linskey, KR, Gimbel, DC, Zukerberg, LR, Duncan, LM, Sadow, PM, Nazarian, RM. BerEp4, cytokeratin 14, and cytokeratin 17 immunohistochemical staining aid in differentiation of basaloid squamous cell carcinoma from basal cell carcinoma with squamous metaplasia. Arch Pathol Lab Med 2013; 137: 1591–8.CrossRefGoogle ScholarPubMed
Tope, WD, Nowfar-Rad, M, Kist, DA. Ber-EP4-positive phenotype differentiates actinic keratosis from superficial basal cell carcinoma. Dermatol Surg 2000; 26: 415–18.CrossRefGoogle ScholarPubMed
Yu, L, Galan, A, McNiff, JM. Caveats in BerEP4 staining to differentiate basal and squamous cell carcinoma. J Cutan Pathol 2009; 36: 1074–6.CrossRefGoogle ScholarPubMed
Wagnoner, J, Keehn, C, Morgan, MB. CD-10 immunostaining differentiates superficial basal cell carcinoma from cutaneous squamous cell carcinoma. Am J Dermatopathol 2007; 29: 555–8.Google Scholar
Shields, JA, Demirici, H, Marr, BP, Eagle, RC Jr, Shields, CL. Sebaceous carcinoma of the ocular region: a review. Surv Ophthalmol 2005; 50: 103–22.CrossRefGoogle ScholarPubMed
Asadi-Amoli, F, Khoshnevis, F, Haeri, H, Jahanzad, I, Pazira, R, Shahsiah, R. Comparative examination of androgen receptor reactivity for differential diagnosis of sebaceous carcinoma from squamous cell and basal cell carcinoma. Am J Clin Pathol 2010; 134: 22–6.CrossRefGoogle ScholarPubMed
Ostler, DA, Prieto, VG, Reed, JA, Deavers, MT, Lazar, AJ, Ivan, D. Adipophilin expression in sebaceous tumors and other cutaneous lesions with clear cell histology: an immunohistochemical study of 117 cases. Mod Pathol 2010; 23: 567–73.CrossRefGoogle ScholarPubMed
Sramek, B, Lisle, A, Loy, T. Immunohistochemistry in ocular carcinomas. J Cutan Pathol 2008; 35: 641–6.CrossRefGoogle ScholarPubMed
Boussahmain, C, Mochel, MC, Hoang, MP. Perilipin and adipophilin expression in sebaceous carcinoma and mimics. Hum Pathol 2013; 44: 1811–16.CrossRefGoogle ScholarPubMed
Bourlond, F, Velter, C, Cribier, B. Androgen receptor expression in epidermal and adnexal tumours. Ann Dermatol Venereol 2021; 148: 116–21.CrossRefGoogle ScholarPubMed
Ansai, S, Arase, S, Kawana, S, Kimura, T. Immunohistochemical findings of sebaceous carcinoma and sebaceoma: retrieval of cytokeratin expression by a panel of anti-cytokeratin monoclonal antibodies. J Dermatol 2011; 38: 951–8.CrossRefGoogle ScholarPubMed
Oules, B, Deschamps, L, Sohier, P, et al. Diagnostic accuracy of GATA6 immunostaining in sebaceous tumors of the skin. Mod Pathol 2023; 36: 100101. doi: 10.1016/j.modpat.2023.100101.CrossRefGoogle ScholarPubMed
Mittal, R, Araujo, I, Czanner, G, Coupland, SE. Perforin expression in eyelid sebaceous carcinomas: a useful and specific immunomarker for the differential diagnosis of eyelid carcinomas. Acta Opthalmol 2016; 94: e325-30. doi: 10.1111/aos.12972.CrossRefGoogle ScholarPubMed
Ng, JKM, Choi, PCL, Chow, C, et al. PRAME immunostain expression in sebaceous lesions, cutaneous carcinomas and adnexal structures. Pathology 2022; 54: 721–8.CrossRefGoogle ScholarPubMed
Gradecki, SE, Eid, MV, Pramoonjago, P, Wick, MR. Glioma-associated oncogene-1 expression in basal cell carcinoma and its histologic mimics. Am J Dermatopathol 2021; 43: 637–41.CrossRefGoogle ScholarPubMed
Robson, A, Greene, J, Ansari, N, et al. Eccrine porocarcinoma (malignant eccrine poroma): a clinicopathologic study of 69 cases. Am J Surg Pathol 2001; 25: 710–20.CrossRefGoogle ScholarPubMed
Goh, SGN, Dayrit, JF, Calonje, E. Sarcomatoid eccrine porocarcinoma: report of two cases and a review of the literature. J Cutan Pathol 2007; 34: 5560.CrossRefGoogle Scholar
Qureshi, HS, Ormsby, A, Lee, MW, Zarbo, RJ, Ma, CK. The diagnostic utility of p63, CK5/6, CK7 and CK20 in distinguishing primary cutaneous adnexal neoplasms from metastatic carcinomas. J Cutan Pathol 2004; 31: 145–52.CrossRefGoogle Scholar
Pulitzer, M, Desman, G, Busam, KJ. CK7 expression in primary cutaneous squamous cell carcinoma. J Cutan Pathol 2010; 37: 966–72.CrossRefGoogle ScholarPubMed
Mahalingam, M, Nguyen, LP, Richards, JE, Muzikansky, A, Hoang, MP. The diagnostic utility of immunohistochemistry in distinguishing primary skin adnexal carcinomas from metastatic adenocarcinoma to skin: an immunohistochemical reappraisal using cytokeratin 15, nestin, p63, D2-40, and calretinin. Mod Pathol 2010; 23: 713–19.CrossRefGoogle ScholarPubMed
Kurokawa, I, Urakawa, Y, Senba, Y, et al. Keratin profiles may differ between intraepidermal and intradermal invasive eccrine porocarcinoma. Oncol Rep 2006; 16: 473–7.Google ScholarPubMed
Chen, S, Takahara, M, Kido, M, et al. Increased expression of an epidermal stem cell marker, cytokeratin 19, in cutaneous squamous cell carcinoma. Br J Dermatol 2008; 159: 952–5.CrossRefGoogle ScholarPubMed
Yada, K, Kashima, K, Daa, T, Kitano, S, Fujiwara, S, Yokoyama, S. Expression of CD10 in basal cell carcinoma. Am J Dermatopathol 2004; 26: 463–71.CrossRefGoogle ScholarPubMed
Lee, JJ, Mochel, MC, Piris, A, Boussahmain, C, Mahalingam, M, Hoang, MP. p40 exhibits better specificity than p63 in distinguishing primary skin adnexal carcinomas from cutaneous metastases. Hum Pathol 2014; 45: 1078–83.CrossRefGoogle ScholarPubMed
Afshar, M, Deroide, F, Robson, A. BerEP4 is widely expressed in tumors of the sweat apparatus: a source of potential diagnostic error. J Cutan Pathol 2013; 40: 259–64.CrossRefGoogle ScholarPubMed
Goto, K, Ishikawa, M, Hamada, K, et al. Comparison of immunohistochemical expression of cytokeratin 19, c-KIT, BerEP4, GATA3, and NUTM1 between porocarcinoma and squamous cell carcinoma. Am J Dermatopathol 2021; 43: 781–7.CrossRefGoogle ScholarPubMed
Macagno, N, Kervarrec, T, Sohier, P, et al. NUT is a specific immunohistochemical marker for the diagnosis of YAP1-NUTM1-rearranged cutaneous poroid neoplasms. Am J Surg Pathol 2021; 45: 1221–7.CrossRefGoogle ScholarPubMed
Miura, K, Akashi, T, Namiki, T, et al. Engrailed homeobox 1 and cytokeratin 19 are independent diagnostic markers of eccrine porocarcinoma and distinguish it from squamous cell carcinoma. Am J Clin Pathol 2020; 154: 499509.CrossRefGoogle ScholarPubMed
Russell-Goldman, E, Hornick, JL, Hanna, J. Utility of YAP1 and NUT immunohistochemistry in the diagnosis of porocarcinoma. J Cutan Pathol 2021; 48: 403–10.CrossRefGoogle ScholarPubMed
Sekine, S, Kiyono, T, Ryo, E, et al. Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma. J Clin Invest 2019; 129: 3827–32.CrossRefGoogle ScholarPubMed
Folpe, AL, Cooper, K. Best practices in diagnostic immunohistochemistry: pleomorphic cutaneous spindle cell tumors. Arch Pathol Lab Med 2007; 131: 1517–24.CrossRefGoogle ScholarPubMed
Ko, CJ, McNiff, JM, Glusac, EJ. Squamous cell carcinoma with single cell infiltration: a potential diagnostic pitfall and the utility of MNF116 and p63. J Cutan Pathol 2008; 35: 353–7.CrossRefGoogle ScholarPubMed
Bishop, JA, Montgomery, EA, Westra, WH. Use of p40 and p63 immunohistochemistry and human papillomavirus testing as ancillary tools for the recognition of head and neck sarcomatoid carcinoma and its distinction from benign and malignant mesenchymal processes. Am J Surg Pathol 2014; 38: 257–64.CrossRefGoogle ScholarPubMed
Miettinen, M, McCue, PA, Sariomo-Rikala, M, et al. Sox-10 – a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol 2015; 39: 826–35.CrossRefGoogle Scholar
Hultgren, TL, DiMaio, DJ. Immunohistochemical staining of CD10 in atypical fibroxanthomas. J Cutan Pathol 2007; 34: 415–19.CrossRefGoogle ScholarPubMed
Mirza, B, Weedon, D. Atypical fibroxanthoma: a clinicopathological study of 89 cases. Australas J Dermatol 2005; 46: 235–8.CrossRefGoogle ScholarPubMed
Luzar, B, Calonje, E. Morphological and immunohistochemical characteristics of atypical fibroxanthoma with a special emphasis on potential diagnostic pitfalls: a review. J Cutan Pathol 2010; 37: 301–9.CrossRefGoogle ScholarPubMed
Szczepanski, JM, Siddiqui, J, Patel, RM, Harms, PW, Hrycaj, SM, Chan, MP. Expression of SATB2 in primary cutaneous sarcomatoid neoplasms: a potential diagnostic pitfall. Pathology 2023; 55: 350–4.CrossRefGoogle ScholarPubMed
Ha Lan, TT, Chen, SJT, Arps, DP, et al. Expression of the p40 isoform of p63 has high specificity for cutaneous sarcomatoid squamous cell carcinoma. J Cutan Pathol 2014; 41: 831–8.CrossRefGoogle ScholarPubMed
Chokoeva, AA, Tchernev, G, Cardoso, JC, et al. Vulvar sarcomas: Short guideline for histopathological recognition and clinical management. Part 1. Int J Immunopathol Pharmacol 2015; 28: 168–77.Google Scholar
Costa, LC, Leite, C, Cardoso, S, et al. Expression of epithelial-mesenchymal transition markers at the invasive front of oral squamous cell carcinoma. J Appl Oral Sci 2015; 23: 169–78.CrossRefGoogle ScholarPubMed
Mentzel, T, Requena, L, Kaddu, S, et al. Cutaneous myoepithelial neoplasms: clinicopathologic and immunohistochemical study of 20 cases suggesting a continuous spectrum ranging from benign mixed tumor of the skin to cutaneous myoepithelioma and myoepithelial carcinoma. J Cutan Pathol 2003; 30: 294302.CrossRefGoogle ScholarPubMed
Hornick, JL, Fletcher, CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am J Surg Pathol 2003; 27: 1183–96.CrossRefGoogle Scholar
Folpe, AL, Schoolmeester, JK, McCluggage, WG, et al. SMARCB1-deficient vulvar neoplasms: a clinicopathologic, immunohistochemical, and molecular genetic study of 14 cases. Am J Surg Pathol 2015; 39: 836–49.CrossRefGoogle ScholarPubMed
Watanabe, S, Ichikawa, E, Takahashi, H, Otsuka, F. Changes of cytokeratin and involucrin expression in squamous cell carcinomas of the skin during progression to malignancy. Br J Dermatol 1995; 132: 730–9.Google ScholarPubMed
Reddi, DM, Puri, PK. Expression of focal TTF-1 expression in a case of CK7/CK20-positive Merkel cell carcinoma. J Cutan Pathol 2013; 40: 431–3.CrossRefGoogle Scholar
Karpinski, P, Mendez-Pena, JE, Wu, C-L, et al. POU4F3 is a sensitive and specific marker of Merkel cell carcinoma. Mod Pathol 2025; 38: 100627. doi: 10.1016/j.modpat.2024.100627 .CrossRefGoogle ScholarPubMed
Kurokawa, M, Nabeshima, K, Akiyama, Y, et al. CD56: a useful marker for diagnosing Merkel cell carcinoma. J Dermatol Sci 2003; 31: 219–24.CrossRefGoogle ScholarPubMed
Fernández-Figueras, MT, Puig, L, Musulén, E, et al. Expression profiles associated with aggressive behavior in Merkel cell carcinoma. Mod Pathol 2007; 20: 90101.CrossRefGoogle ScholarPubMed
McCalmont, TH. Paranuclear dots of neurofilament reliably identify Merkel cell carcinoma. J Cutan Pathol 2010; 37: 821–3.CrossRefGoogle ScholarPubMed
Wong, SQ, Waldeck, K, Vergara, IA, et al. UV-associated mutations underlie the etiology of MCV-negative Merkel cell carcinomas. Cancer Res 2015; 75: 5228–34.CrossRefGoogle ScholarPubMed
Molina-Ruiz, AM, Santonja, C, Rütten, A, Cerroni, L, Kutzner, H, Requena, L. Immunohistochemistry in the diagnosis of cutaneous viral infections- part II: cutaneous viral infections by parvoviruses, poxviruses, paramyxoviridae, picornaviridae, retroviruses and filoviruses. Am J Dermatopathol 2015; 37: 93106.CrossRefGoogle ScholarPubMed
Requena, L, Kutzner, H, Palmedo, G, et al. Cutaneous involvement in multiple myeloma: a clinicopathologic, immunohistochemical, and cytogenetic study of 8 cases. Arch Dermatol 2003; 139: 475–86.CrossRefGoogle ScholarPubMed
Robson, A, Shukur, Z, Ally, M, et al. Immunocytochemical p63 expression discriminates between primary cutaneous follicle centre cell and diffuse large B-cell lymphoma-leg type, and is of the TAp63 isoform. Histopathology 2016; 69: 1119.CrossRefGoogle ScholarPubMed
Schneider, M, Crimmins, J, Selim, A. An etiology-focused overview of vulvar and penile squamous cell carcinoma and its precursors: similarities, differences and emerging concepts. Diagn Histopathol 2024; 30: 114.CrossRefGoogle Scholar
Jenkins, TM, Mills, AM. Putative precancerous lesions of vulvar squamous cell carcinoma. Semin Diagn Pathol 2021; 38: 2736.CrossRefGoogle ScholarPubMed
Parra-Herran, C, Nucci, MR, Singh, N, et al. HPV-independent, p53-wild-type vulvar intraepithelial neoplasia: a review of nomenclature and the journey to characterize verruciform and acanthotic precursor lesions of the vulva. Mod Pathol 2022; 35: 1317–26.CrossRefGoogle ScholarPubMed
Akbari, A, Pinto, A, Amemiya, Y, Seth, A, Mirkovic, J, Parra-Herran, C. Differentiated exophytic vulvar intraepithelial lesion: Clinicopathologic and molecular analysis documenting its relationship with verrucous carcinoma of the vulva. Mod Pathol 2020; 33: 2011–18.CrossRefGoogle ScholarPubMed
Rakislova, N, Alemany, L, Clavero, O, et al. HPV-independent precursors mimicking high-grade squamous intraepithelial lesions (HSIL) of the vulva. Am J Surg Pathol 2020; 44: 1506–14.CrossRefGoogle ScholarPubMed
Yang, H, Almadani, N, Thompson, EF, et al. Classification of vulvar squamous cell carcinoma and precursor lesions by p16 and p53 immunohistochemistry: considerations, caveats, and an algorithmic approach. Mod Pathol 2023; 36: 100–45.CrossRefGoogle Scholar
Rakislova, N, Alemany, L, Clavero, O, et al. Differentiated vulvar intraepithelial neoplasia-like and lichen sclerosus-like lesions in HPV-associated squamous cell carcinomas of the vulva. Am J Surg Pathol 2018; 42: 828–35.CrossRefGoogle ScholarPubMed
Graham, RP, Arnold, CA, Naini, BV, Lam-Himlin, DM. Basaloid squamous cell carcinoma of the anus revisited. Am J Surg Pathol 2016; 40: 354–60.CrossRefGoogle ScholarPubMed
Gillespie, JJ, MacKay, B. Histogenesis of cloacogenic carcinoma. Fine structure of anal transitional epithelium and cloacogenic carcinoma. Hum Pathol 1978; 9: 579–87.Google ScholarPubMed
WHO Classification of Tumours Editorial Board. Digestive system tumours. Lyon (France): International Agency for Research on Cancer; 2019. (WHO classification of tumours series, 5th ed.; vol. 1). https://publications.iarc.fr/579.Google Scholar
Zhu, X, Jamshed, S, Zou, J, et al. Molecular and immunophenotypic characterization of anal squamous cell carcinoma reveals distinct clinicopathologic groups associated with HPV and TP53 mutation status. Mod Pathol 2021; 34: 1017–30.CrossRefGoogle ScholarPubMed
Patil, DT, Goldblum, JR, Billings, SD. Clinicopathological analysis of basal cell carcinoma of the anal region and its distinction from basaloid squamous cell carcinoma. Mod Pathol 2013; 26: 1382–9.CrossRefGoogle ScholarPubMed
Patil, DT, Yang, B. Utility of human papillomavirus capsid protein L1 and p16 in the assessment and accurate classification of anal squamous intraepithelial lesions. Am J Clin Pathol 2015; 144: 113–21.CrossRefGoogle ScholarPubMed
Kazakov, DV, Spagnolo, DV, Kacerovska, D, Michal, M. Lesions of anogenital mammary-like glands: an update. Adv Anat Pathol 2011; 18: 128.CrossRefGoogle ScholarPubMed
Roberts, JM, Cornall, AM, Ekman, D, et al. Papillary immature metaplasia of the anal canal: a low-grade lesion that can mimic a high-grade lesion. Am J Surg Pathol 2016; 40: 348–53.CrossRefGoogle Scholar
Bartoš, V. Expression of p16 protein in cutaneous basal cell carcinoma: still far from being clearly understood. Acta Dermatovenerol Croat 2020; 28: 43–4.Google ScholarPubMed
Heller, DS, Day, T, Allbritton, JI, et al. Diagnostic criteria for differentiated vulvar intraepithelial neoplasia and vulvar aberrant maturation. J Low Genit Tract Dis 2021; 25: 5770.CrossRefGoogle ScholarPubMed
Madahian, S, Judelson, R, Zhu, X, et al. CD56 expression in basaloid anal squamous cell carcinoma – A potential diagnostic pitfall. Ann Diagn Pathol 2021; 53: 151758. doi: 10.1016/j.anndiagpath.2021.151758.CrossRefGoogle ScholarPubMed
George, E, Swanson, PE, Wick, MR. Neuroendocrine differentiation in basal cell carcinoma: an immunohistochemical study. Am J Dermatopathol 1989; 11: 131–5.CrossRefGoogle ScholarPubMed
Lilo, MT, Chen, Y, LeBlanc, RE. INSM1 is more sensitive and interpretable than conventional immunohistochemical stains used to diagnose Merkel cell carcinoma. Am J Surg Pathol 2018; 42: 1541–8.CrossRefGoogle ScholarPubMed
van Wyk, AC, Moolla, Z, Motala, AI, et al. Merkel cell carcinoma of the anorectum: a case report and review of the literature. Clin J Gastroenterol 2022; 15: 740–5.CrossRefGoogle ScholarPubMed
Chetty, R, Serra, S, Hsieh, E. Basaloid squamous carcinoma of the anal canal with an adenoid cystic pattern: histologic and immunohistochemical reappraisal of an unusual variant. Am J Surg Pathol 2005; 29: 1668–72.CrossRefGoogle ScholarPubMed
WHO Classification of Tumours Editorial Board. Skin tumours [Internet; beta version ahead of print]. Lyon (France): International Agency for Research on Cancer; 2023. (WHO classification of tumours series, 5th ed.; vol. 12). Available from: https://tumourclassification.iarc.who.int/chapters/64.Google Scholar
Boyd, AS, Stasko, TS, Tang, YW. Basaloid squamous cell carcinoma of the skin. J Am Acad Dermatol 2011; 64: 144–51.CrossRefGoogle ScholarPubMed
Vu, TT, Soong, L, Hung, T, Fiorillo, L, Joseph, K. Cutaneous HPV16 and p16 positive basaloid squamous cell carcinoma with brain metastasis: a case report. SAGE Open Med Case Rep 2020; 8: 2050313X20935260.CrossRefGoogle ScholarPubMed
Kurman, RJ, Toki, T, Schiffman, MH. Basaloid and warty carcinomas of the vulva. Distinctive types of squamous cell carcinoma frequently associated with human papillomaviruses. Am J Surg Pathol 1993; 17: 133–45.CrossRefGoogle ScholarPubMed
McCluggage, WG, editor. Chapter, XI. Tumours of the vulva. In: WHO Classification of Tumours Editorial Board. Female genital tumours. Lyon (France): International Agency for Research on Cancer; 2020. pp.419-434(WHO classification of tumours series, 5th ed.; vol. 4).Google Scholar
Serota, AI, Weil, M, Williams, RA, Wollman, JS, Wilson, SE. Anal cloacogenic carcinoma: classification and clinical behavior. Arch Surg 1981; 116: 456–9.CrossRefGoogle ScholarPubMed
Bigby, SM, Eva, LJ, Tous, S, et al. Prevaccine human papillomavirus status in invasive and intraepithelial lesions of the vulva in New Zealand women. J Low Genit Tract Dis 2022; 26: 323–7.CrossRefGoogle ScholarPubMed
Quick, CM. 2 – Squamous Neoplasms of the Vulva. In: Nucci, MR, Parra-Herran, C, editors. Gynecologic Pathology (Second Edition) [Internet]. Philadelphia: Elsevier; 2020 [cited 2024 Apr 27]. p. 4770. (Foundations in Diagnostic Pathology). Available from: www.sciencedirect.com/science/article/pii/B9780323359092000023CrossRefGoogle Scholar
Maniar, KP, Nayar, R. HPV-related squamous neoplasia of the lower anogenital tract: an update and review of recent guidelines. Adv Anat Pathol 2014; 21: 341–58.CrossRefGoogle ScholarPubMed
Darragh, TM, Colgan, TJ, Thomas Cox, J, et al. The lower anogenital squamous terminology standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int J Gynecol Pathol 2013; 32: 76115.CrossRefGoogle ScholarPubMed
Stewart, CJR, Crook, ML. Fascin and cyclin D1 immunoreactivity in non-neoplastic vulvar squamous epithelium, vulvar intraepithelial neoplasia and invasive squamous carcinoma: correlation with Ki67 and p16 protein expression. J Clin Pathol 2014; 67: 319–25.CrossRefGoogle ScholarPubMed
Pirog, EC. Immunohistochemistry and in situ hybridization for the diagnosis and classification of squamous lesions of the anogenital region. Semin Diagn Pathol 2015; 32: 409–18.CrossRefGoogle ScholarPubMed
Ungureanu, C, Socolov, DG, Anton, G, et al. Role of ProEx C immunocytochemistry in cervical high-grade squamous intraepithelial lesions detection. Rom J Morphol Embryol 2021; 62: 1029–34.Google ScholarPubMed
Travé, G, Zanier, K. HPV-mediated inactivation of tumor suppressor p53. Cell Cycle 2016; 15: 2231–2.CrossRefGoogle ScholarPubMed
Maniar, KP, Sanchez, B, Paintal, A, Gursel, DB, Nayar, R. Role of the biomarker p16 in downgrading -IN2 diagnoses and predicting higher-grade lesions. Am J Surg Pathol 2015; 39: 1708–18.CrossRefGoogle Scholar
Dong, F, Kojiro, S, Borger, DR, Growdon, WB, Oliva, E. Squamous cell carcinoma of the vulva: a subclassification of 97 cases by clinicopathologic, immunohistochemical, and molecular features (p16, p53, and EGFR). Am J Surg Pathol 2015; 39: 1045–53.CrossRefGoogle ScholarPubMed
Carreras-Dieguez, N, Saco, A, Del Pino, M, et al. Vulvar squamous cell carcinoma arising on human papillomavirus-independent precursors mimicking high-grade squamous intra-epithelial lesion: a distinct and highly recurrent subtype of vulvar cancer. Histopathology 2023; 82: 731–44.CrossRefGoogle ScholarPubMed
Dongre, HN, Elnour, R, Tornaas, S, et al. TP53 mutation and human papilloma virus status as independent prognostic factors in a Norwegian cohort of vulva squamous cell carcinoma. Acta Obstet Gynecol Scand 2024; 103: 165–75.CrossRefGoogle Scholar
Sah, SP, McCluggage, WG. Florid vulval Paget disease exhibiting p16 immunoreactivity and mimicking classic VIN. Int J Gynecol Pathol 2013; 32: 221–7.CrossRefGoogle ScholarPubMed
Dasgupta, S, Ewing-Graham, PC, van Kemenade, FJ, van Doorn, HC, Noordhoek Hegt, V, Koljenović, S. Differentiated vulvar intraepithelial neoplasia (dVIN): the most helpful histological features and the utility of cytokeratins 13 and 17. Virchows Arch 2018; 473: 739–47.CrossRefGoogle ScholarPubMed
Dasgupta, S, Ewing-Graham, PC, Swagemakers, SMA, et al. Precursor lesions of vulvar squamous cell carcinoma – histology and biomarkers: A systematic review. Crit Rev Oncol Hematol 2020; 147: 102866. doi: 10.1016/j.critrevonc.2020.102866.CrossRefGoogle ScholarPubMed
Singh, N, Leen, SL, Han, G, et al. Expanding the morphologic spectrum of differentiated VIN (dVIN) through detailed mapping of cases with p53 loss. Am J Surg Pathol 2015; 39: 5260.CrossRefGoogle ScholarPubMed
Tessier-Cloutier, B, Kortekaas, KE, Thompson, E, et al. Major p53 immunohistochemical patterns in in situ and invasive squamous cell carcinomas of the vulva and correlation with TP53 mutation status. Mod Pathol 2020; 33: 1595–605.CrossRefGoogle ScholarPubMed
Thompson, EF, Wong, RWC, Trevisan, G, et al. p53-abnormal “fields of dysplasia” in human papillomavirus–independent vulvar squamous cell carcinoma impacts margins and recurrence risk. Mod Pathol 2023 Feb; 36(2): 100010. doi: 10.1016/j.modpat.2022.100010.CrossRefGoogle Scholar
McMullen-Tabry, ER, Schechter, SA, Wang, GY, et al. p53/CK17 dual stain improves accuracy of distinction between differentiated vulvar intraepithelial neoplasia and its mimics. Int J Gynecol Pathol 2022; 41: 298306.CrossRefGoogle ScholarPubMed
Dasgupta, S, Koljenović, S, van den Bosch, TPP, et al. Evaluation of immunohistochemical markers, CK17 and SOX2, as adjuncts to p53 for the diagnosis of differentiated vulvar intraepithelial neoplasia (dVIN). Pharmaceuticals 2021; 14: 324. doi: 10.3390/ph14040324.CrossRefGoogle ScholarPubMed
Roberts, JNT, Bentz, JL, LeBlanc, RE, Cass, I. Correlation of histopathologic findings with clinical predictors of disease recurrence and progression to vulvar carcinoma in patients with differentiated vulvar intraepithelial neoplasia (dVIN). Gynecol Oncol Rep 2024; 52: 101358. doi: 10.1016/j.gore.2024.101358.CrossRefGoogle ScholarPubMed
Cook, E, Van de Vijver, K, Parra-Herran, C. Diagnosis of verruciform acanthotic vulvar intra-epithelial neoplasia (vaVIN) using CK17, SOX2 and GATA3 immunohistochemistry. Histopathology 2024; 84: 1212–23.CrossRefGoogle ScholarPubMed
Zare, SY, Fard, EV, Fadare, O. GATA3 immunohistochemistry as a diagnostic adjunct for differentiated vulvar intraepithelial neoplasia: utility and limitations. Hum Pathol 2023; 139: 5564.CrossRefGoogle Scholar
Carreras-Dieguez, N, Saco, A, Del Pino, M, et al. Human papillomavirus and p53 status define three types of vulvar squamous cell carcinomas with distinct clinical, pathological, and prognostic features. Histopathology 2023; 83: 1730.CrossRefGoogle ScholarPubMed
Nascimento, AF, Granter, SR, Cviko, A, Yuan, L, Hecht, JL, Crum, CP. Vulvar acanthosis with altered differentiation: a precursor to verrucous carcinoma? Am J Surg Pathol 2004; 28: 638–43.CrossRefGoogle ScholarPubMed
Roy, SF, Wong, J, Le Page, C, et al. DEVIL, VAAD and vLSC constitute a spectrum of HPV-independent, p53-independent intra-epithelial neoplasia of the vulva. Histopathology 2021; 79: 975–88.CrossRefGoogle ScholarPubMed
De Luca, DA, Papara, C, Vorobyev, A, et al. Lichen sclerosus: The 2023 update. Front Med 2023; 10: 1106318. doi: 10.3389/fmed.2023.1106318.CrossRefGoogle ScholarPubMed
Gleue, CA, Xie, F, Deschaine, M, et al. Differential proteomic expression in indolent vulvar lichen sclerosus, transforming vulvar lichen sclerosus and normal vulvar tissue. Exp Dermatol 2022; 31: 1920–6.CrossRefGoogle ScholarPubMed
Chaudhari, AS, McFadden, JR, Bentz, J, Evans, RH, Selim, MA, Sriharan, A. A mimicker of differentiated vulvar intraepithelial neoplasia: reactive atypia from noncompliance with lichen sclerosus therapy. Am J Dermatopathol 2024; 46: 519–22.CrossRefGoogle ScholarPubMed
Liegl, B, Regauer, S. p53 immunostaining in lichen sclerosus is related to ischaemic stress and is not a marker of differentiated vulvar intraepithelial neoplasia (d-VIN). Histopathology 2006; 48: 268–74.CrossRefGoogle Scholar
Lee, ES, Allen, D, Scurry, J. Pseudoepitheliomatous hyperplasia in lichen sclerosus of the vulva. Int J Gynecol Pathol 2003; 22: 5762.CrossRefGoogle ScholarPubMed
Rakislova, N, Carreras-Dieguez, N, Manzotti, C, et al. Differential etiopathogenic features of vulvar squamous cell carcinomas in sub-Saharan Africa and Europe. Int J Cancer 2023; 152: 496503.CrossRefGoogle ScholarPubMed
Proctor, L, Hoang, L, Moore, J, et al. Association of human papilloma virus status and response to radiotherapy in vulvar squamous cell carcinoma. Int J Gynecol Cancer 2020; 30: 100–6.CrossRefGoogle ScholarPubMed
Rakislova, N, Alemany, L, Clavero, O, et al. p53 immunohistochemical patterns in HPV-independent squamous cell carcinomas of the vulva and the associated skin lesions: a study of 779 cases. Int J Mol Sci 2020; 21: 8091. doi: 10.3390/ijms21218091.CrossRefGoogle ScholarPubMed
Baandrup, L, Sand, FL, Aalborg, GL, Nøttrup, TJ, Fiehn, AMK, Kjaer, SK. PD-L1 expression in vulvar cancer: a systematic review and meta-analysis. Histopathology 2024; 84: 742–52.CrossRefGoogle ScholarPubMed
Anic, GM, Lee, JH, Stockwell, H, et al. Incidence and human papillomavirus (HPV) type distribution of genital warts in a multinational cohort of men: the HPV in men study. J Infect Dis 2011; 204: 1886–92.CrossRefGoogle Scholar
Olesen, TB, Sand, FL, Rasmussen, CL, et al. Prevalence of human papillomavirus DNA and p16(INK4a) in penile cancer and penile intraepithelial neoplasia: a systematic review and meta-analysis. Lancet Oncol 2019; 20: 145–58.CrossRefGoogle ScholarPubMed
Shabbir, M, Minhas, S, Muneer, A. Diagnosis and management of premalignant penile lesions. Ther Adv Urol 2011; 3: 151–8.CrossRefGoogle ScholarPubMed
Irshad, U, Puckett, Y. Giant condylomata acuminata of Buschke and Lowenstein. In: StatPearls [www.ncbi.nlm.nih.gov/books/NBK560714/]. Treasure Island (FL): StatPearls Publishing. 2024.Google Scholar
Shabbir, M, Barod, R, Hegarty, PK, Minhas, S. Primary prevention and vaccination for penile cancer. Ther Adv Urol 2013; 5: 161–9.CrossRefGoogle ScholarPubMed
Canete-Portillo, S, Velazquez, EF, Kristiansen, G, et al. Report from the International Society of Urological Pathology (ISUP) consultation conference on Molecular Pathology of Urogenital Cancers V: Recommendations on the use of immunohistochemical and molecular biomarkers in penile cancer. Am J Surg Pathol 2020; 44: e80–e6.CrossRefGoogle ScholarPubMed
Stiff, KM, Cohen, PR. Vegas (verruciform genital-associated) xanthoma: a comprehensive literature review. Dermatol Ther 2017; 7: 6579.CrossRefGoogle ScholarPubMed
Trinh, NB, Tran, GH. Penile verruciform xanthoma mimicking large genital wart. Int J Dermatol 2022; 61: e43–e4.CrossRefGoogle ScholarPubMed
Fernandez-Nestosa, MJ, Clavero, O, Sanchez, DF, et al. Penile intraepithelial neoplasia: Distribution of subtypes, HPV genotypes and p16(INK4a) in 84 international cases. Hum Pathol 2023; 131: 18.CrossRefGoogle ScholarPubMed
Straub Hogan, MM, Spieker, AJ, Orejudos, M, et al. Pathological characterization and clinical outcome of penile intraepithelial neoplasia variants: a North American series. Mod Pathol 2022; 35: 1101–9.CrossRefGoogle ScholarPubMed
Velazquez, EF, Chaux, A, Cubilla, AL. Histologic classification of penile intraepithelial neoplasia. Semin Diagn Pathol 2012; 29: 96102.CrossRefGoogle ScholarPubMed
Chaux, A, Pfannl, R, Lloveras, B, et al. Distinctive association of p16INK4a overexpression with penile intraepithelial neoplasia depicting warty and/or basaloid features: a study of 141 cases evaluating a new nomenclature. Am J Surg Pathol 2010; 34: 385–92.CrossRefGoogle ScholarPubMed
Watkins, JC, Yang, E, Crum, CP, et al. Classic vulvar intraepithelial neoplasia with superimposed lichen simplex chronicus: a unique variant mimicking differentiated vulvar intraepithelial neoplasia. Int J Gynecol Pathol 2019; 38: 175–82.CrossRefGoogle ScholarPubMed
Griesinger, LM, Walline, H, Wang, GY, et al. Expanding the morphologic, immunohistochemical, and HPV genotypic features of high-grade squamous intraepithelial lesions of the vulva with morphology mimicking differentiated vulvar intraepithelial neoplasia and/or lichen sclerosus. Int J Gynecol Pathol 2021; 40: 205–13.CrossRefGoogle ScholarPubMed
Chaux, A, Sanchez, DF, Fernandez-Nestosa, MJ, et al. The dual pathogenesis of penile neoplasia: the heterogeneous morphology of human papillomavirus-related tumors. Asian J Urol 2022; 9: 349–58.Google ScholarPubMed
Cornejo, KM, Hutchinson, L, O’Donnell, P, et al. Molecular profiling of syringocystadenocarcinoma papilliferum reveals RAS-activating mutations. Arch Pathol Lab Med 2024; 148: 215–22.CrossRefGoogle ScholarPubMed
Regauer, S, Ermakov, M, Kashofer, K. The spectrum of HPV-independent penile intraepithelial neoplasia: a proposal for subclassification. Am J Surg Pathol 2023; 47: 1449–60.Google ScholarPubMed
Canete-Portillo, S, Sanchez, DF, Cubilla, AL. Pathology of invasive and intraepithelial penile neoplasia. Eur Urol Focus 2019; 5: 713–17.Google ScholarPubMed
Guerrero, J, Trias, I, Veloza, L, et al. HPV-negative penile intraepithelial neoplasia (PeIN) with basaloid features. Am J Surg Pathol 2022; 46: 1071–7.CrossRefGoogle ScholarPubMed
Eich, ML, Del Carmen Rodriguez Pena, M, Schwartz, L, et al. Morphology, p16, HPV, and outcomes in squamous cell carcinoma of the penis: a multi-institutional study. Hum Pathol 2020; 96: 7986.CrossRefGoogle ScholarPubMed
Chaux, A, Tamboli, P, Ayala, A, et al. Warty-basaloid carcinoma: clinicopathological features of a distinctive penile neoplasm. Report of 45 cases. Mod Pathol 2010; 23: 896904.CrossRefGoogle ScholarPubMed
Cubilla, AL, Reuter, VE, Gregoire, L, et al. Basaloid squamous cell carcinoma: a distinctive human papilloma virus-related penile neoplasm: a report of 20 cases. Am J Surg Pathol 1998; 22: 755–61.CrossRefGoogle ScholarPubMed
Cubilla, AL, Velazques, EF, Reuter, VE, Oliva, E, Mihm, MC Jr., Young, RH. Warty (condylomatous) squamous cell carcinoma of the penis: a report of 11 cases and proposed classification of ‘verruciform’ penile tumors. Am J Surg Pathol 2000; 24: 505–12.CrossRefGoogle ScholarPubMed
Zhang, M, Adeniran, AJ, Vikram, R, et al. Carcinoma of the urethra. Hum Pathol 2018; 72: 3544.CrossRefGoogle ScholarPubMed
Chaux, A, Han, JS, Lee, S, et al. Immunohistochemical profile of the penile urethra and differential expression of GATA3 in urothelial versus squamous cell carcinomas of the penile urethra. Hum Pathol 2013; 44: 2760–7.CrossRefGoogle ScholarPubMed
Ermakov, MS, Kashofer, K, Regauer, S. Different mutational landscapes in human papillomavirus-induced and human papillomavirus-independent invasive penile squamous cell cancers. Mod Pathol 2023; 36: 100250. doi: 10.1016/j.modpat.2023.100250.CrossRefGoogle Scholar
Kashofer, K, Winter, E, Halbwedl, I, et al. HPV-negative penile squamous cell carcinoma: disruptive mutations in the TP53 gene are common. Mod Pathol 2017; 30: 1013–20.CrossRefGoogle ScholarPubMed
Tessier-Cloutier, B, Pors, J, Thompson, E, et al. Molecular characterization of invasive and in situ squamous neoplasia of the vulva and implications for morphologic diagnosis and outcome. Mod Pathol 2021; 34: 508–18.CrossRefGoogle ScholarPubMed
Akbari, A, Pinto, A, Amemiya, Y, Seth, A, Mirkovic, J, Parra-Herran, C. Differentiated exophytic vulvar intraepithelial lesion: Clinicopathologic and molecular analysis documenting its relationship with verrucous carcinoma of the vulva. Mod Pathol 2020; 33: 2011–18.CrossRefGoogle ScholarPubMed
Watkins, JC, Howitt, BE, Horowitz, NS, et al. Differentiated exophytic vulvar intraepithelial lesions are genetically distinct from keratinizing squamous cell carcinomas and contain mutations in PIK3CA. Mod Pathol 2017; 30: 448–58.CrossRefGoogle ScholarPubMed
Kim, K, Kim, JW, Santos, I, Oakley, A. Body site locations of basal cell carcinoma, squamous cell carcinoma and actinic keratosis in patients referred to the Waikato District Health Board teledermoscopy clinic. J Prim Health Care 2022; 14: 80–6.CrossRefGoogle Scholar
Cassarino, DS, Derienzo, DP, Barr, RJ. Cutaneous squamous cell carcinoma: a comprehensive clinicopathologic classification. Part one. J Cutan Pathol 2006; 33: 191206.Google ScholarPubMed
Ross, AS, Whalen, FM, Elenitsas, R, Xu, X, Troxel, AB, Schmults, CD. Diameter of involved nerves predicts outcomes in cutaneous squamous cell carcinoma with perineural invasion: an investigator-blinded retrospective cohort study. Dermatol Surg 2009; 35: 1859–66.CrossRefGoogle ScholarPubMed
Henderson, SA, Torres-Cabala, CA, Curry, JL, et al. p40 is more specific than p63 for the distinction of atypical fibroxanthoma from other cutaneous spindle cell malignancies. Am J Surg Pathol 2014; 38: 1102–10.CrossRefGoogle ScholarPubMed
Sigel, JE, Skacel, M, Bergfeld, WF, House, NS, Rabkin, MS, Goldblum, JR. The utility of cytokeratin 5/6 in the recognition of cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol 2001; 28: 520–4.CrossRefGoogle ScholarPubMed
Mahalingam, M, Richards, JE, Selim, MA, Muzikansky, A, Hoang, MP. An immunohistochemical comparison of cytokeratin 7, cytokeratin 15, cytokeratin 19, CAM5.2, carcinoembryonic antigen, and nestin in differentiating porocarcinoma from squamous cell carcinoma. Hum Pathol 2012; 43: 1265–72.CrossRefGoogle Scholar
Heyderman, E, Graham, RM, Chapman, DV, Richardson, TC, McKee, PH. Epithelial markers in primary skin cancer: an immunoperoxidase study of the distribution of epithelial membrane antigen (EMA) and carcinoembryonic antigen (CEA) in 65 primary skin carcinomas. Histopathology 1984; 8: 423–34.CrossRefGoogle ScholarPubMed
Beer, TW, Shepherd, P, Theaker, JM. Ber-EP4 and epithelial membrane antigen aid distinction of basal cell, squamous cell and basosquamous carcinomas of the skin. Histopathology 2000; 37: 218–23.CrossRefGoogle ScholarPubMed
Hoang, MP, Dresser, KA, Kapur, P, High, WA, Mahalingam, M. Microcystic adnexal carcinoma: an immunohistochemical reappraisal. Mod Pathol 2008; 21: 178–85.CrossRefGoogle ScholarPubMed
Fan, YS, Carr, RA, Sanders, DS, Smith, AP, Lazar, AJ, Calonje, E. Characteristic Ber-EP4 and EMA expression in sebaceoma is immunohistochemically distinct from basal cell carcinoma. Histopathology 2007; 51: 80–6.CrossRefGoogle ScholarPubMed
Swanson, PE, Fitzpatrick, MM, Ritter, JH, Glusac, EJ, Wick, MR. Immunohistologic differential diagnosis of basal cell carcinoma, squamous cell carcinoma, and trichoepithelioma in small cutaneous biopsy specimens. J Cutan Pathol 1998; 25: 153–9.CrossRefGoogle ScholarPubMed
Pham, TT, Selim, MA, Burchette, JL Jr, Madden, J, Turner, J, Herman, C. CD10 expression in trichoepithelioma and basal cell carcinoma. J Cutan Pathol 2006; 33: 123–8.CrossRefGoogle ScholarPubMed
Linskey, KR, Gimbel, DC, Zukerberg, LR, Duncan, LM, Sadow, PM, Nazarian, RM. BerEp4, cytokeratin 14, and cytokeratin 17 immunohistochemical staining aid in differentiation of basaloid squamous cell carcinoma from basal cell carcinoma with squamous metaplasia. Arch Pathol Lab Med 2013; 137: 1591–8.CrossRefGoogle ScholarPubMed
Tope, WD, Nowfar-Rad, M, Kist, DA. Ber-EP4-positive phenotype differentiates actinic keratosis from superficial basal cell carcinoma. Dermatol Surg 2000; 26: 415–18.CrossRefGoogle ScholarPubMed
Yu, L, Galan, A, McNiff, JM. Caveats in BerEP4 staining to differentiate basal and squamous cell carcinoma. J Cutan Pathol 2009; 36: 1074–6.CrossRefGoogle ScholarPubMed
Wagnoner, J, Keehn, C, Morgan, MB. CD-10 immunostaining differentiates superficial basal cell carcinoma from cutaneous squamous cell carcinoma. Am J Dermatopathol 2007; 29: 555–8.Google Scholar
Shields, JA, Demirici, H, Marr, BP, Eagle, RC Jr, Shields, CL. Sebaceous carcinoma of the ocular region: a review. Surv Ophthalmol 2005; 50: 103–22.CrossRefGoogle ScholarPubMed
Asadi-Amoli, F, Khoshnevis, F, Haeri, H, Jahanzad, I, Pazira, R, Shahsiah, R. Comparative examination of androgen receptor reactivity for differential diagnosis of sebaceous carcinoma from squamous cell and basal cell carcinoma. Am J Clin Pathol 2010; 134: 22–6.CrossRefGoogle ScholarPubMed
Ostler, DA, Prieto, VG, Reed, JA, Deavers, MT, Lazar, AJ, Ivan, D. Adipophilin expression in sebaceous tumors and other cutaneous lesions with clear cell histology: an immunohistochemical study of 117 cases. Mod Pathol 2010; 23: 567–73.CrossRefGoogle ScholarPubMed
Sramek, B, Lisle, A, Loy, T. Immunohistochemistry in ocular carcinomas. J Cutan Pathol 2008; 35: 641–6.CrossRefGoogle ScholarPubMed
Boussahmain, C, Mochel, MC, Hoang, MP. Perilipin and adipophilin expression in sebaceous carcinoma and mimics. Hum Pathol 2013; 44: 1811–16.CrossRefGoogle ScholarPubMed
Bourlond, F, Velter, C, Cribier, B. Androgen receptor expression in epidermal and adnexal tumours. Ann Dermatol Venereol 2021; 148: 116–21.CrossRefGoogle ScholarPubMed
Ansai, S, Arase, S, Kawana, S, Kimura, T. Immunohistochemical findings of sebaceous carcinoma and sebaceoma: retrieval of cytokeratin expression by a panel of anti-cytokeratin monoclonal antibodies. J Dermatol 2011; 38: 951–8.CrossRefGoogle ScholarPubMed
Oules, B, Deschamps, L, Sohier, P, et al. Diagnostic accuracy of GATA6 immunostaining in sebaceous tumors of the skin. Mod Pathol 2023; 36: 100101. doi: 10.1016/j.modpat.2023.100101.CrossRefGoogle ScholarPubMed
Mittal, R, Araujo, I, Czanner, G, Coupland, SE. Perforin expression in eyelid sebaceous carcinomas: a useful and specific immunomarker for the differential diagnosis of eyelid carcinomas. Acta Opthalmol 2016; 94: e325-30. doi: 10.1111/aos.12972.CrossRefGoogle ScholarPubMed
Ng, JKM, Choi, PCL, Chow, C, et al. PRAME immunostain expression in sebaceous lesions, cutaneous carcinomas and adnexal structures. Pathology 2022; 54: 721–8.CrossRefGoogle ScholarPubMed
Gradecki, SE, Eid, MV, Pramoonjago, P, Wick, MR. Glioma-associated oncogene-1 expression in basal cell carcinoma and its histologic mimics. Am J Dermatopathol 2021; 43: 637–41.CrossRefGoogle ScholarPubMed
Robson, A, Greene, J, Ansari, N, et al. Eccrine porocarcinoma (malignant eccrine poroma): a clinicopathologic study of 69 cases. Am J Surg Pathol 2001; 25: 710–20.CrossRefGoogle ScholarPubMed
Goh, SGN, Dayrit, JF, Calonje, E. Sarcomatoid eccrine porocarcinoma: report of two cases and a review of the literature. J Cutan Pathol 2007; 34: 5560.CrossRefGoogle Scholar
Qureshi, HS, Ormsby, A, Lee, MW, Zarbo, RJ, Ma, CK. The diagnostic utility of p63, CK5/6, CK7 and CK20 in distinguishing primary cutaneous adnexal neoplasms from metastatic carcinomas. J Cutan Pathol 2004; 31: 145–52.CrossRefGoogle Scholar
Pulitzer, M, Desman, G, Busam, KJ. CK7 expression in primary cutaneous squamous cell carcinoma. J Cutan Pathol 2010; 37: 966–72.CrossRefGoogle ScholarPubMed
Mahalingam, M, Nguyen, LP, Richards, JE, Muzikansky, A, Hoang, MP. The diagnostic utility of immunohistochemistry in distinguishing primary skin adnexal carcinomas from metastatic adenocarcinoma to skin: an immunohistochemical reappraisal using cytokeratin 15, nestin, p63, D2-40, and calretinin. Mod Pathol 2010; 23: 713–19.CrossRefGoogle ScholarPubMed
Kurokawa, I, Urakawa, Y, Senba, Y, et al. Keratin profiles may differ between intraepidermal and intradermal invasive eccrine porocarcinoma. Oncol Rep 2006; 16: 473–7.Google ScholarPubMed
Chen, S, Takahara, M, Kido, M, et al. Increased expression of an epidermal stem cell marker, cytokeratin 19, in cutaneous squamous cell carcinoma. Br J Dermatol 2008; 159: 952–5.CrossRefGoogle ScholarPubMed
Yada, K, Kashima, K, Daa, T, Kitano, S, Fujiwara, S, Yokoyama, S. Expression of CD10 in basal cell carcinoma. Am J Dermatopathol 2004; 26: 463–71.CrossRefGoogle ScholarPubMed
Lee, JJ, Mochel, MC, Piris, A, Boussahmain, C, Mahalingam, M, Hoang, MP. p40 exhibits better specificity than p63 in distinguishing primary skin adnexal carcinomas from cutaneous metastases. Hum Pathol 2014; 45: 1078–83.CrossRefGoogle ScholarPubMed
Afshar, M, Deroide, F, Robson, A. BerEP4 is widely expressed in tumors of the sweat apparatus: a source of potential diagnostic error. J Cutan Pathol 2013; 40: 259–64.CrossRefGoogle ScholarPubMed
Goto, K, Ishikawa, M, Hamada, K, et al. Comparison of immunohistochemical expression of cytokeratin 19, c-KIT, BerEP4, GATA3, and NUTM1 between porocarcinoma and squamous cell carcinoma. Am J Dermatopathol 2021; 43: 781–7.CrossRefGoogle ScholarPubMed
Macagno, N, Kervarrec, T, Sohier, P, et al. NUT is a specific immunohistochemical marker for the diagnosis of YAP1-NUTM1-rearranged cutaneous poroid neoplasms. Am J Surg Pathol 2021; 45: 1221–7.CrossRefGoogle ScholarPubMed
Miura, K, Akashi, T, Namiki, T, et al. Engrailed homeobox 1 and cytokeratin 19 are independent diagnostic markers of eccrine porocarcinoma and distinguish it from squamous cell carcinoma. Am J Clin Pathol 2020; 154: 499509.CrossRefGoogle ScholarPubMed
Russell-Goldman, E, Hornick, JL, Hanna, J. Utility of YAP1 and NUT immunohistochemistry in the diagnosis of porocarcinoma. J Cutan Pathol 2021; 48: 403–10.CrossRefGoogle ScholarPubMed
Sekine, S, Kiyono, T, Ryo, E, et al. Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma. J Clin Invest 2019; 129: 3827–32.CrossRefGoogle ScholarPubMed
Folpe, AL, Cooper, K. Best practices in diagnostic immunohistochemistry: pleomorphic cutaneous spindle cell tumors. Arch Pathol Lab Med 2007; 131: 1517–24.CrossRefGoogle ScholarPubMed
Ko, CJ, McNiff, JM, Glusac, EJ. Squamous cell carcinoma with single cell infiltration: a potential diagnostic pitfall and the utility of MNF116 and p63. J Cutan Pathol 2008; 35: 353–7.CrossRefGoogle ScholarPubMed
Bishop, JA, Montgomery, EA, Westra, WH. Use of p40 and p63 immunohistochemistry and human papillomavirus testing as ancillary tools for the recognition of head and neck sarcomatoid carcinoma and its distinction from benign and malignant mesenchymal processes. Am J Surg Pathol 2014; 38: 257–64.CrossRefGoogle ScholarPubMed
Miettinen, M, McCue, PA, Sariomo-Rikala, M, et al. Sox-10 – a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol 2015; 39: 826–35.CrossRefGoogle Scholar
Hultgren, TL, DiMaio, DJ. Immunohistochemical staining of CD10 in atypical fibroxanthomas. J Cutan Pathol 2007; 34: 415–19.CrossRefGoogle ScholarPubMed
Mirza, B, Weedon, D. Atypical fibroxanthoma: a clinicopathological study of 89 cases. Australas J Dermatol 2005; 46: 235–8.CrossRefGoogle ScholarPubMed
Luzar, B, Calonje, E. Morphological and immunohistochemical characteristics of atypical fibroxanthoma with a special emphasis on potential diagnostic pitfalls: a review. J Cutan Pathol 2010; 37: 301–9.CrossRefGoogle ScholarPubMed
Szczepanski, JM, Siddiqui, J, Patel, RM, Harms, PW, Hrycaj, SM, Chan, MP. Expression of SATB2 in primary cutaneous sarcomatoid neoplasms: a potential diagnostic pitfall. Pathology 2023; 55: 350–4.CrossRefGoogle ScholarPubMed
Ha Lan, TT, Chen, SJT, Arps, DP, et al. Expression of the p40 isoform of p63 has high specificity for cutaneous sarcomatoid squamous cell carcinoma. J Cutan Pathol 2014; 41: 831–8.CrossRefGoogle ScholarPubMed
Chokoeva, AA, Tchernev, G, Cardoso, JC, et al. Vulvar sarcomas: Short guideline for histopathological recognition and clinical management. Part 1. Int J Immunopathol Pharmacol 2015; 28: 168–77.Google Scholar
Costa, LC, Leite, C, Cardoso, S, et al. Expression of epithelial-mesenchymal transition markers at the invasive front of oral squamous cell carcinoma. J Appl Oral Sci 2015; 23: 169–78.CrossRefGoogle ScholarPubMed
Mentzel, T, Requena, L, Kaddu, S, et al. Cutaneous myoepithelial neoplasms: clinicopathologic and immunohistochemical study of 20 cases suggesting a continuous spectrum ranging from benign mixed tumor of the skin to cutaneous myoepithelioma and myoepithelial carcinoma. J Cutan Pathol 2003; 30: 294302.CrossRefGoogle ScholarPubMed
Hornick, JL, Fletcher, CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am J Surg Pathol 2003; 27: 1183–96.CrossRefGoogle Scholar
Folpe, AL, Schoolmeester, JK, McCluggage, WG, et al. SMARCB1-deficient vulvar neoplasms: a clinicopathologic, immunohistochemical, and molecular genetic study of 14 cases. Am J Surg Pathol 2015; 39: 836–49.CrossRefGoogle ScholarPubMed
Watanabe, S, Ichikawa, E, Takahashi, H, Otsuka, F. Changes of cytokeratin and involucrin expression in squamous cell carcinomas of the skin during progression to malignancy. Br J Dermatol 1995; 132: 730–9.Google ScholarPubMed
Reddi, DM, Puri, PK. Expression of focal TTF-1 expression in a case of CK7/CK20-positive Merkel cell carcinoma. J Cutan Pathol 2013; 40: 431–3.CrossRefGoogle Scholar
Karpinski, P, Mendez-Pena, JE, Wu, C-L, et al. POU4F3 is a sensitive and specific marker of Merkel cell carcinoma. Mod Pathol 2025; 38: 100627. doi: 10.1016/j.modpat.2024.100627 .CrossRefGoogle ScholarPubMed
Kurokawa, M, Nabeshima, K, Akiyama, Y, et al. CD56: a useful marker for diagnosing Merkel cell carcinoma. J Dermatol Sci 2003; 31: 219–24.CrossRefGoogle ScholarPubMed
Fernández-Figueras, MT, Puig, L, Musulén, E, et al. Expression profiles associated with aggressive behavior in Merkel cell carcinoma. Mod Pathol 2007; 20: 90101.CrossRefGoogle ScholarPubMed
McCalmont, TH. Paranuclear dots of neurofilament reliably identify Merkel cell carcinoma. J Cutan Pathol 2010; 37: 821–3.CrossRefGoogle ScholarPubMed
Wong, SQ, Waldeck, K, Vergara, IA, et al. UV-associated mutations underlie the etiology of MCV-negative Merkel cell carcinomas. Cancer Res 2015; 75: 5228–34.CrossRefGoogle ScholarPubMed
Molina-Ruiz, AM, Santonja, C, Rütten, A, Cerroni, L, Kutzner, H, Requena, L. Immunohistochemistry in the diagnosis of cutaneous viral infections- part II: cutaneous viral infections by parvoviruses, poxviruses, paramyxoviridae, picornaviridae, retroviruses and filoviruses. Am J Dermatopathol 2015; 37: 93106.CrossRefGoogle ScholarPubMed
Requena, L, Kutzner, H, Palmedo, G, et al. Cutaneous involvement in multiple myeloma: a clinicopathologic, immunohistochemical, and cytogenetic study of 8 cases. Arch Dermatol 2003; 139: 475–86.CrossRefGoogle ScholarPubMed
Robson, A, Shukur, Z, Ally, M, et al. Immunocytochemical p63 expression discriminates between primary cutaneous follicle centre cell and diffuse large B-cell lymphoma-leg type, and is of the TAp63 isoform. Histopathology 2016; 69: 1119.CrossRefGoogle ScholarPubMed
Schneider, M, Crimmins, J, Selim, A. An etiology-focused overview of vulvar and penile squamous cell carcinoma and its precursors: similarities, differences and emerging concepts. Diagn Histopathol 2024; 30: 114.CrossRefGoogle Scholar
Jenkins, TM, Mills, AM. Putative precancerous lesions of vulvar squamous cell carcinoma. Semin Diagn Pathol 2021; 38: 2736.CrossRefGoogle ScholarPubMed
Parra-Herran, C, Nucci, MR, Singh, N, et al. HPV-independent, p53-wild-type vulvar intraepithelial neoplasia: a review of nomenclature and the journey to characterize verruciform and acanthotic precursor lesions of the vulva. Mod Pathol 2022; 35: 1317–26.CrossRefGoogle ScholarPubMed
Akbari, A, Pinto, A, Amemiya, Y, Seth, A, Mirkovic, J, Parra-Herran, C. Differentiated exophytic vulvar intraepithelial lesion: Clinicopathologic and molecular analysis documenting its relationship with verrucous carcinoma of the vulva. Mod Pathol 2020; 33: 2011–18.CrossRefGoogle ScholarPubMed
Rakislova, N, Alemany, L, Clavero, O, et al. HPV-independent precursors mimicking high-grade squamous intraepithelial lesions (HSIL) of the vulva. Am J Surg Pathol 2020; 44: 1506–14.CrossRefGoogle ScholarPubMed
Yang, H, Almadani, N, Thompson, EF, et al. Classification of vulvar squamous cell carcinoma and precursor lesions by p16 and p53 immunohistochemistry: considerations, caveats, and an algorithmic approach. Mod Pathol 2023; 36: 100–45.CrossRefGoogle Scholar
Rakislova, N, Alemany, L, Clavero, O, et al. Differentiated vulvar intraepithelial neoplasia-like and lichen sclerosus-like lesions in HPV-associated squamous cell carcinomas of the vulva. Am J Surg Pathol 2018; 42: 828–35.CrossRefGoogle ScholarPubMed
Graham, RP, Arnold, CA, Naini, BV, Lam-Himlin, DM. Basaloid squamous cell carcinoma of the anus revisited. Am J Surg Pathol 2016; 40: 354–60.CrossRefGoogle ScholarPubMed
Gillespie, JJ, MacKay, B. Histogenesis of cloacogenic carcinoma. Fine structure of anal transitional epithelium and cloacogenic carcinoma. Hum Pathol 1978; 9: 579–87.Google ScholarPubMed
WHO Classification of Tumours Editorial Board. Digestive system tumours. Lyon (France): International Agency for Research on Cancer; 2019. (WHO classification of tumours series, 5th ed.; vol. 1). https://publications.iarc.fr/579.Google Scholar
Zhu, X, Jamshed, S, Zou, J, et al. Molecular and immunophenotypic characterization of anal squamous cell carcinoma reveals distinct clinicopathologic groups associated with HPV and TP53 mutation status. Mod Pathol 2021; 34: 1017–30.CrossRefGoogle ScholarPubMed
Patil, DT, Goldblum, JR, Billings, SD. Clinicopathological analysis of basal cell carcinoma of the anal region and its distinction from basaloid squamous cell carcinoma. Mod Pathol 2013; 26: 1382–9.CrossRefGoogle ScholarPubMed
Patil, DT, Yang, B. Utility of human papillomavirus capsid protein L1 and p16 in the assessment and accurate classification of anal squamous intraepithelial lesions. Am J Clin Pathol 2015; 144: 113–21.CrossRefGoogle ScholarPubMed
Kazakov, DV, Spagnolo, DV, Kacerovska, D, Michal, M. Lesions of anogenital mammary-like glands: an update. Adv Anat Pathol 2011; 18: 128.CrossRefGoogle ScholarPubMed
Roberts, JM, Cornall, AM, Ekman, D, et al. Papillary immature metaplasia of the anal canal: a low-grade lesion that can mimic a high-grade lesion. Am J Surg Pathol 2016; 40: 348–53.CrossRefGoogle Scholar
Bartoš, V. Expression of p16 protein in cutaneous basal cell carcinoma: still far from being clearly understood. Acta Dermatovenerol Croat 2020; 28: 43–4.Google ScholarPubMed
Heller, DS, Day, T, Allbritton, JI, et al. Diagnostic criteria for differentiated vulvar intraepithelial neoplasia and vulvar aberrant maturation. J Low Genit Tract Dis 2021; 25: 5770.CrossRefGoogle ScholarPubMed
Madahian, S, Judelson, R, Zhu, X, et al. CD56 expression in basaloid anal squamous cell carcinoma – A potential diagnostic pitfall. Ann Diagn Pathol 2021; 53: 151758. doi: 10.1016/j.anndiagpath.2021.151758.CrossRefGoogle ScholarPubMed
George, E, Swanson, PE, Wick, MR. Neuroendocrine differentiation in basal cell carcinoma: an immunohistochemical study. Am J Dermatopathol 1989; 11: 131–5.CrossRefGoogle ScholarPubMed
Lilo, MT, Chen, Y, LeBlanc, RE. INSM1 is more sensitive and interpretable than conventional immunohistochemical stains used to diagnose Merkel cell carcinoma. Am J Surg Pathol 2018; 42: 1541–8.CrossRefGoogle ScholarPubMed
van Wyk, AC, Moolla, Z, Motala, AI, et al. Merkel cell carcinoma of the anorectum: a case report and review of the literature. Clin J Gastroenterol 2022; 15: 740–5.CrossRefGoogle ScholarPubMed
Chetty, R, Serra, S, Hsieh, E. Basaloid squamous carcinoma of the anal canal with an adenoid cystic pattern: histologic and immunohistochemical reappraisal of an unusual variant. Am J Surg Pathol 2005; 29: 1668–72.CrossRefGoogle ScholarPubMed
WHO Classification of Tumours Editorial Board. Skin tumours [Internet; beta version ahead of print]. Lyon (France): International Agency for Research on Cancer; 2023. (WHO classification of tumours series, 5th ed.; vol. 12). Available from: https://tumourclassification.iarc.who.int/chapters/64.Google Scholar
Boyd, AS, Stasko, TS, Tang, YW. Basaloid squamous cell carcinoma of the skin. J Am Acad Dermatol 2011; 64: 144–51.CrossRefGoogle ScholarPubMed
Vu, TT, Soong, L, Hung, T, Fiorillo, L, Joseph, K. Cutaneous HPV16 and p16 positive basaloid squamous cell carcinoma with brain metastasis: a case report. SAGE Open Med Case Rep 2020; 8: 2050313X20935260.CrossRefGoogle ScholarPubMed
Kurman, RJ, Toki, T, Schiffman, MH. Basaloid and warty carcinomas of the vulva. Distinctive types of squamous cell carcinoma frequently associated with human papillomaviruses. Am J Surg Pathol 1993; 17: 133–45.CrossRefGoogle ScholarPubMed
McCluggage, WG, editor. Chapter, XI. Tumours of the vulva. In: WHO Classification of Tumours Editorial Board. Female genital tumours. Lyon (France): International Agency for Research on Cancer; 2020. pp.419-434(WHO classification of tumours series, 5th ed.; vol. 4).Google Scholar
Serota, AI, Weil, M, Williams, RA, Wollman, JS, Wilson, SE. Anal cloacogenic carcinoma: classification and clinical behavior. Arch Surg 1981; 116: 456–9.CrossRefGoogle ScholarPubMed
Bigby, SM, Eva, LJ, Tous, S, et al. Prevaccine human papillomavirus status in invasive and intraepithelial lesions of the vulva in New Zealand women. J Low Genit Tract Dis 2022; 26: 323–7.CrossRefGoogle ScholarPubMed
Quick, CM. 2 – Squamous Neoplasms of the Vulva. In: Nucci, MR, Parra-Herran, C, editors. Gynecologic Pathology (Second Edition) [Internet]. Philadelphia: Elsevier; 2020 [cited 2024 Apr 27]. p. 4770. (Foundations in Diagnostic Pathology). Available from: www.sciencedirect.com/science/article/pii/B9780323359092000023CrossRefGoogle Scholar
Maniar, KP, Nayar, R. HPV-related squamous neoplasia of the lower anogenital tract: an update and review of recent guidelines. Adv Anat Pathol 2014; 21: 341–58.CrossRefGoogle ScholarPubMed
Darragh, TM, Colgan, TJ, Thomas Cox, J, et al. The lower anogenital squamous terminology standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int J Gynecol Pathol 2013; 32: 76115.CrossRefGoogle ScholarPubMed
Stewart, CJR, Crook, ML. Fascin and cyclin D1 immunoreactivity in non-neoplastic vulvar squamous epithelium, vulvar intraepithelial neoplasia and invasive squamous carcinoma: correlation with Ki67 and p16 protein expression. J Clin Pathol 2014; 67: 319–25.CrossRefGoogle ScholarPubMed
Pirog, EC. Immunohistochemistry and in situ hybridization for the diagnosis and classification of squamous lesions of the anogenital region. Semin Diagn Pathol 2015; 32: 409–18.CrossRefGoogle ScholarPubMed
Ungureanu, C, Socolov, DG, Anton, G, et al. Role of ProEx C immunocytochemistry in cervical high-grade squamous intraepithelial lesions detection. Rom J Morphol Embryol 2021; 62: 1029–34.Google ScholarPubMed
Travé, G, Zanier, K. HPV-mediated inactivation of tumor suppressor p53. Cell Cycle 2016; 15: 2231–2.CrossRefGoogle ScholarPubMed
Maniar, KP, Sanchez, B, Paintal, A, Gursel, DB, Nayar, R. Role of the biomarker p16 in downgrading -IN2 diagnoses and predicting higher-grade lesions. Am J Surg Pathol 2015; 39: 1708–18.CrossRefGoogle Scholar
Dong, F, Kojiro, S, Borger, DR, Growdon, WB, Oliva, E. Squamous cell carcinoma of the vulva: a subclassification of 97 cases by clinicopathologic, immunohistochemical, and molecular features (p16, p53, and EGFR). Am J Surg Pathol 2015; 39: 1045–53.CrossRefGoogle ScholarPubMed
Carreras-Dieguez, N, Saco, A, Del Pino, M, et al. Vulvar squamous cell carcinoma arising on human papillomavirus-independent precursors mimicking high-grade squamous intra-epithelial lesion: a distinct and highly recurrent subtype of vulvar cancer. Histopathology 2023; 82: 731–44.CrossRefGoogle ScholarPubMed
Dongre, HN, Elnour, R, Tornaas, S, et al. TP53 mutation and human papilloma virus status as independent prognostic factors in a Norwegian cohort of vulva squamous cell carcinoma. Acta Obstet Gynecol Scand 2024; 103: 165–75.CrossRefGoogle Scholar
Sah, SP, McCluggage, WG. Florid vulval Paget disease exhibiting p16 immunoreactivity and mimicking classic VIN. Int J Gynecol Pathol 2013; 32: 221–7.CrossRefGoogle ScholarPubMed
Dasgupta, S, Ewing-Graham, PC, van Kemenade, FJ, van Doorn, HC, Noordhoek Hegt, V, Koljenović, S. Differentiated vulvar intraepithelial neoplasia (dVIN): the most helpful histological features and the utility of cytokeratins 13 and 17. Virchows Arch 2018; 473: 739–47.CrossRefGoogle ScholarPubMed
Dasgupta, S, Ewing-Graham, PC, Swagemakers, SMA, et al. Precursor lesions of vulvar squamous cell carcinoma – histology and biomarkers: A systematic review. Crit Rev Oncol Hematol 2020; 147: 102866. doi: 10.1016/j.critrevonc.2020.102866.CrossRefGoogle ScholarPubMed
Singh, N, Leen, SL, Han, G, et al. Expanding the morphologic spectrum of differentiated VIN (dVIN) through detailed mapping of cases with p53 loss. Am J Surg Pathol 2015; 39: 5260.CrossRefGoogle ScholarPubMed
Tessier-Cloutier, B, Kortekaas, KE, Thompson, E, et al. Major p53 immunohistochemical patterns in in situ and invasive squamous cell carcinomas of the vulva and correlation with TP53 mutation status. Mod Pathol 2020; 33: 1595–605.CrossRefGoogle ScholarPubMed
Thompson, EF, Wong, RWC, Trevisan, G, et al. p53-abnormal “fields of dysplasia” in human papillomavirus–independent vulvar squamous cell carcinoma impacts margins and recurrence risk. Mod Pathol 2023 Feb; 36(2): 100010. doi: 10.1016/j.modpat.2022.100010.CrossRefGoogle Scholar
McMullen-Tabry, ER, Schechter, SA, Wang, GY, et al. p53/CK17 dual stain improves accuracy of distinction between differentiated vulvar intraepithelial neoplasia and its mimics. Int J Gynecol Pathol 2022; 41: 298306.CrossRefGoogle ScholarPubMed
Dasgupta, S, Koljenović, S, van den Bosch, TPP, et al. Evaluation of immunohistochemical markers, CK17 and SOX2, as adjuncts to p53 for the diagnosis of differentiated vulvar intraepithelial neoplasia (dVIN). Pharmaceuticals 2021; 14: 324. doi: 10.3390/ph14040324.CrossRefGoogle ScholarPubMed
Roberts, JNT, Bentz, JL, LeBlanc, RE, Cass, I. Correlation of histopathologic findings with clinical predictors of disease recurrence and progression to vulvar carcinoma in patients with differentiated vulvar intraepithelial neoplasia (dVIN). Gynecol Oncol Rep 2024; 52: 101358. doi: 10.1016/j.gore.2024.101358.CrossRefGoogle ScholarPubMed
Cook, E, Van de Vijver, K, Parra-Herran, C. Diagnosis of verruciform acanthotic vulvar intra-epithelial neoplasia (vaVIN) using CK17, SOX2 and GATA3 immunohistochemistry. Histopathology 2024; 84: 1212–23.CrossRefGoogle ScholarPubMed
Zare, SY, Fard, EV, Fadare, O. GATA3 immunohistochemistry as a diagnostic adjunct for differentiated vulvar intraepithelial neoplasia: utility and limitations. Hum Pathol 2023; 139: 5564.CrossRefGoogle Scholar
Carreras-Dieguez, N, Saco, A, Del Pino, M, et al. Human papillomavirus and p53 status define three types of vulvar squamous cell carcinomas with distinct clinical, pathological, and prognostic features. Histopathology 2023; 83: 1730.CrossRefGoogle ScholarPubMed
Nascimento, AF, Granter, SR, Cviko, A, Yuan, L, Hecht, JL, Crum, CP. Vulvar acanthosis with altered differentiation: a precursor to verrucous carcinoma? Am J Surg Pathol 2004; 28: 638–43.CrossRefGoogle ScholarPubMed
Roy, SF, Wong, J, Le Page, C, et al. DEVIL, VAAD and vLSC constitute a spectrum of HPV-independent, p53-independent intra-epithelial neoplasia of the vulva. Histopathology 2021; 79: 975–88.CrossRefGoogle ScholarPubMed
De Luca, DA, Papara, C, Vorobyev, A, et al. Lichen sclerosus: The 2023 update. Front Med 2023; 10: 1106318. doi: 10.3389/fmed.2023.1106318.CrossRefGoogle ScholarPubMed
Gleue, CA, Xie, F, Deschaine, M, et al. Differential proteomic expression in indolent vulvar lichen sclerosus, transforming vulvar lichen sclerosus and normal vulvar tissue. Exp Dermatol 2022; 31: 1920–6.CrossRefGoogle ScholarPubMed
Chaudhari, AS, McFadden, JR, Bentz, J, Evans, RH, Selim, MA, Sriharan, A. A mimicker of differentiated vulvar intraepithelial neoplasia: reactive atypia from noncompliance with lichen sclerosus therapy. Am J Dermatopathol 2024; 46: 519–22.CrossRefGoogle ScholarPubMed
Liegl, B, Regauer, S. p53 immunostaining in lichen sclerosus is related to ischaemic stress and is not a marker of differentiated vulvar intraepithelial neoplasia (d-VIN). Histopathology 2006; 48: 268–74.CrossRefGoogle Scholar
Lee, ES, Allen, D, Scurry, J. Pseudoepitheliomatous hyperplasia in lichen sclerosus of the vulva. Int J Gynecol Pathol 2003; 22: 5762.CrossRefGoogle ScholarPubMed
Rakislova, N, Carreras-Dieguez, N, Manzotti, C, et al. Differential etiopathogenic features of vulvar squamous cell carcinomas in sub-Saharan Africa and Europe. Int J Cancer 2023; 152: 496503.CrossRefGoogle ScholarPubMed
Proctor, L, Hoang, L, Moore, J, et al. Association of human papilloma virus status and response to radiotherapy in vulvar squamous cell carcinoma. Int J Gynecol Cancer 2020; 30: 100–6.CrossRefGoogle ScholarPubMed
Rakislova, N, Alemany, L, Clavero, O, et al. p53 immunohistochemical patterns in HPV-independent squamous cell carcinomas of the vulva and the associated skin lesions: a study of 779 cases. Int J Mol Sci 2020; 21: 8091. doi: 10.3390/ijms21218091.CrossRefGoogle ScholarPubMed
Baandrup, L, Sand, FL, Aalborg, GL, Nøttrup, TJ, Fiehn, AMK, Kjaer, SK. PD-L1 expression in vulvar cancer: a systematic review and meta-analysis. Histopathology 2024; 84: 742–52.CrossRefGoogle ScholarPubMed
Anic, GM, Lee, JH, Stockwell, H, et al. Incidence and human papillomavirus (HPV) type distribution of genital warts in a multinational cohort of men: the HPV in men study. J Infect Dis 2011; 204: 1886–92.CrossRefGoogle Scholar
Olesen, TB, Sand, FL, Rasmussen, CL, et al. Prevalence of human papillomavirus DNA and p16(INK4a) in penile cancer and penile intraepithelial neoplasia: a systematic review and meta-analysis. Lancet Oncol 2019; 20: 145–58.CrossRefGoogle ScholarPubMed
Shabbir, M, Minhas, S, Muneer, A. Diagnosis and management of premalignant penile lesions. Ther Adv Urol 2011; 3: 151–8.CrossRefGoogle ScholarPubMed
Irshad, U, Puckett, Y. Giant condylomata acuminata of Buschke and Lowenstein. In: StatPearls [www.ncbi.nlm.nih.gov/books/NBK560714/]. Treasure Island (FL): StatPearls Publishing. 2024.Google Scholar
Shabbir, M, Barod, R, Hegarty, PK, Minhas, S. Primary prevention and vaccination for penile cancer. Ther Adv Urol 2013; 5: 161–9.CrossRefGoogle ScholarPubMed
Canete-Portillo, S, Velazquez, EF, Kristiansen, G, et al. Report from the International Society of Urological Pathology (ISUP) consultation conference on Molecular Pathology of Urogenital Cancers V: Recommendations on the use of immunohistochemical and molecular biomarkers in penile cancer. Am J Surg Pathol 2020; 44: e80–e6.CrossRefGoogle ScholarPubMed
Stiff, KM, Cohen, PR. Vegas (verruciform genital-associated) xanthoma: a comprehensive literature review. Dermatol Ther 2017; 7: 6579.CrossRefGoogle ScholarPubMed
Trinh, NB, Tran, GH. Penile verruciform xanthoma mimicking large genital wart. Int J Dermatol 2022; 61: e43–e4.CrossRefGoogle ScholarPubMed
Fernandez-Nestosa, MJ, Clavero, O, Sanchez, DF, et al. Penile intraepithelial neoplasia: Distribution of subtypes, HPV genotypes and p16(INK4a) in 84 international cases. Hum Pathol 2023; 131: 18.CrossRefGoogle ScholarPubMed
Straub Hogan, MM, Spieker, AJ, Orejudos, M, et al. Pathological characterization and clinical outcome of penile intraepithelial neoplasia variants: a North American series. Mod Pathol 2022; 35: 1101–9.CrossRefGoogle ScholarPubMed
Velazquez, EF, Chaux, A, Cubilla, AL. Histologic classification of penile intraepithelial neoplasia. Semin Diagn Pathol 2012; 29: 96102.CrossRefGoogle ScholarPubMed
Chaux, A, Pfannl, R, Lloveras, B, et al. Distinctive association of p16INK4a overexpression with penile intraepithelial neoplasia depicting warty and/or basaloid features: a study of 141 cases evaluating a new nomenclature. Am J Surg Pathol 2010; 34: 385–92.CrossRefGoogle ScholarPubMed
Watkins, JC, Yang, E, Crum, CP, et al. Classic vulvar intraepithelial neoplasia with superimposed lichen simplex chronicus: a unique variant mimicking differentiated vulvar intraepithelial neoplasia. Int J Gynecol Pathol 2019; 38: 175–82.CrossRefGoogle ScholarPubMed
Griesinger, LM, Walline, H, Wang, GY, et al. Expanding the morphologic, immunohistochemical, and HPV genotypic features of high-grade squamous intraepithelial lesions of the vulva with morphology mimicking differentiated vulvar intraepithelial neoplasia and/or lichen sclerosus. Int J Gynecol Pathol 2021; 40: 205–13.CrossRefGoogle ScholarPubMed
Chaux, A, Sanchez, DF, Fernandez-Nestosa, MJ, et al. The dual pathogenesis of penile neoplasia: the heterogeneous morphology of human papillomavirus-related tumors. Asian J Urol 2022; 9: 349–58.Google ScholarPubMed
Cornejo, KM, Hutchinson, L, O’Donnell, P, et al. Molecular profiling of syringocystadenocarcinoma papilliferum reveals RAS-activating mutations. Arch Pathol Lab Med 2024; 148: 215–22.CrossRefGoogle ScholarPubMed
Regauer, S, Ermakov, M, Kashofer, K. The spectrum of HPV-independent penile intraepithelial neoplasia: a proposal for subclassification. Am J Surg Pathol 2023; 47: 1449–60.Google ScholarPubMed
Canete-Portillo, S, Sanchez, DF, Cubilla, AL. Pathology of invasive and intraepithelial penile neoplasia. Eur Urol Focus 2019; 5: 713–17.Google ScholarPubMed
Guerrero, J, Trias, I, Veloza, L, et al. HPV-negative penile intraepithelial neoplasia (PeIN) with basaloid features. Am J Surg Pathol 2022; 46: 1071–7.CrossRefGoogle ScholarPubMed
Eich, ML, Del Carmen Rodriguez Pena, M, Schwartz, L, et al. Morphology, p16, HPV, and outcomes in squamous cell carcinoma of the penis: a multi-institutional study. Hum Pathol 2020; 96: 7986.CrossRefGoogle ScholarPubMed
Chaux, A, Tamboli, P, Ayala, A, et al. Warty-basaloid carcinoma: clinicopathological features of a distinctive penile neoplasm. Report of 45 cases. Mod Pathol 2010; 23: 896904.CrossRefGoogle ScholarPubMed
Cubilla, AL, Reuter, VE, Gregoire, L, et al. Basaloid squamous cell carcinoma: a distinctive human papilloma virus-related penile neoplasm: a report of 20 cases. Am J Surg Pathol 1998; 22: 755–61.CrossRefGoogle ScholarPubMed
Cubilla, AL, Velazques, EF, Reuter, VE, Oliva, E, Mihm, MC Jr., Young, RH. Warty (condylomatous) squamous cell carcinoma of the penis: a report of 11 cases and proposed classification of ‘verruciform’ penile tumors. Am J Surg Pathol 2000; 24: 505–12.CrossRefGoogle ScholarPubMed
Zhang, M, Adeniran, AJ, Vikram, R, et al. Carcinoma of the urethra. Hum Pathol 2018; 72: 3544.CrossRefGoogle ScholarPubMed
Chaux, A, Han, JS, Lee, S, et al. Immunohistochemical profile of the penile urethra and differential expression of GATA3 in urothelial versus squamous cell carcinomas of the penile urethra. Hum Pathol 2013; 44: 2760–7.CrossRefGoogle ScholarPubMed
Ermakov, MS, Kashofer, K, Regauer, S. Different mutational landscapes in human papillomavirus-induced and human papillomavirus-independent invasive penile squamous cell cancers. Mod Pathol 2023; 36: 100250. doi: 10.1016/j.modpat.2023.100250.CrossRefGoogle Scholar
Kashofer, K, Winter, E, Halbwedl, I, et al. HPV-negative penile squamous cell carcinoma: disruptive mutations in the TP53 gene are common. Mod Pathol 2017; 30: 1013–20.CrossRefGoogle ScholarPubMed
Tessier-Cloutier, B, Pors, J, Thompson, E, et al. Molecular characterization of invasive and in situ squamous neoplasia of the vulva and implications for morphologic diagnosis and outcome. Mod Pathol 2021; 34: 508–18.CrossRefGoogle ScholarPubMed
Akbari, A, Pinto, A, Amemiya, Y, Seth, A, Mirkovic, J, Parra-Herran, C. Differentiated exophytic vulvar intraepithelial lesion: Clinicopathologic and molecular analysis documenting its relationship with verrucous carcinoma of the vulva. Mod Pathol 2020; 33: 2011–18.CrossRefGoogle ScholarPubMed
Watkins, JC, Howitt, BE, Horowitz, NS, et al. Differentiated exophytic vulvar intraepithelial lesions are genetically distinct from keratinizing squamous cell carcinomas and contain mutations in PIK3CA. Mod Pathol 2017; 30: 448–58.CrossRefGoogle ScholarPubMed

References

Kim, K, Kim, JW, Santos, I, Oakley, A. Body site locations of basal cell carcinoma, squamous cell carcinoma and actinic keratosis in patients referred to the Waikato District Health Board teledermoscopy clinic. J Prim Health Care 2022; 14: 80–6.CrossRefGoogle Scholar
Cassarino, DS, Derienzo, DP, Barr, RJ. Cutaneous squamous cell carcinoma: a comprehensive clinicopathologic classification. Part one. J Cutan Pathol 2006; 33: 191206.Google ScholarPubMed
Ross, AS, Whalen, FM, Elenitsas, R, Xu, X, Troxel, AB, Schmults, CD. Diameter of involved nerves predicts outcomes in cutaneous squamous cell carcinoma with perineural invasion: an investigator-blinded retrospective cohort study. Dermatol Surg 2009; 35: 1859–66.CrossRefGoogle ScholarPubMed
Henderson, SA, Torres-Cabala, CA, Curry, JL, et al. p40 is more specific than p63 for the distinction of atypical fibroxanthoma from other cutaneous spindle cell malignancies. Am J Surg Pathol 2014; 38: 1102–10.CrossRefGoogle ScholarPubMed
Sigel, JE, Skacel, M, Bergfeld, WF, House, NS, Rabkin, MS, Goldblum, JR. The utility of cytokeratin 5/6 in the recognition of cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol 2001; 28: 520–4.CrossRefGoogle ScholarPubMed
Mahalingam, M, Richards, JE, Selim, MA, Muzikansky, A, Hoang, MP. An immunohistochemical comparison of cytokeratin 7, cytokeratin 15, cytokeratin 19, CAM5.2, carcinoembryonic antigen, and nestin in differentiating porocarcinoma from squamous cell carcinoma. Hum Pathol 2012; 43: 1265–72.CrossRefGoogle Scholar
Heyderman, E, Graham, RM, Chapman, DV, Richardson, TC, McKee, PH. Epithelial markers in primary skin cancer: an immunoperoxidase study of the distribution of epithelial membrane antigen (EMA) and carcinoembryonic antigen (CEA) in 65 primary skin carcinomas. Histopathology 1984; 8: 423–34.CrossRefGoogle ScholarPubMed
Beer, TW, Shepherd, P, Theaker, JM. Ber-EP4 and epithelial membrane antigen aid distinction of basal cell, squamous cell and basosquamous carcinomas of the skin. Histopathology 2000; 37: 218–23.CrossRefGoogle ScholarPubMed
Hoang, MP, Dresser, KA, Kapur, P, High, WA, Mahalingam, M. Microcystic adnexal carcinoma: an immunohistochemical reappraisal. Mod Pathol 2008; 21: 178–85.CrossRefGoogle ScholarPubMed
Fan, YS, Carr, RA, Sanders, DS, Smith, AP, Lazar, AJ, Calonje, E. Characteristic Ber-EP4 and EMA expression in sebaceoma is immunohistochemically distinct from basal cell carcinoma. Histopathology 2007; 51: 80–6.CrossRefGoogle ScholarPubMed
Swanson, PE, Fitzpatrick, MM, Ritter, JH, Glusac, EJ, Wick, MR. Immunohistologic differential diagnosis of basal cell carcinoma, squamous cell carcinoma, and trichoepithelioma in small cutaneous biopsy specimens. J Cutan Pathol 1998; 25: 153–9.CrossRefGoogle ScholarPubMed
Pham, TT, Selim, MA, Burchette, JL Jr, Madden, J, Turner, J, Herman, C. CD10 expression in trichoepithelioma and basal cell carcinoma. J Cutan Pathol 2006; 33: 123–8.CrossRefGoogle ScholarPubMed
Linskey, KR, Gimbel, DC, Zukerberg, LR, Duncan, LM, Sadow, PM, Nazarian, RM. BerEp4, cytokeratin 14, and cytokeratin 17 immunohistochemical staining aid in differentiation of basaloid squamous cell carcinoma from basal cell carcinoma with squamous metaplasia. Arch Pathol Lab Med 2013; 137: 1591–8.CrossRefGoogle ScholarPubMed
Tope, WD, Nowfar-Rad, M, Kist, DA. Ber-EP4-positive phenotype differentiates actinic keratosis from superficial basal cell carcinoma. Dermatol Surg 2000; 26: 415–18.CrossRefGoogle ScholarPubMed
Yu, L, Galan, A, McNiff, JM. Caveats in BerEP4 staining to differentiate basal and squamous cell carcinoma. J Cutan Pathol 2009; 36: 1074–6.CrossRefGoogle ScholarPubMed
Wagnoner, J, Keehn, C, Morgan, MB. CD-10 immunostaining differentiates superficial basal cell carcinoma from cutaneous squamous cell carcinoma. Am J Dermatopathol 2007; 29: 555–8.Google Scholar
Shields, JA, Demirici, H, Marr, BP, Eagle, RC Jr, Shields, CL. Sebaceous carcinoma of the ocular region: a review. Surv Ophthalmol 2005; 50: 103–22.CrossRefGoogle ScholarPubMed
Asadi-Amoli, F, Khoshnevis, F, Haeri, H, Jahanzad, I, Pazira, R, Shahsiah, R. Comparative examination of androgen receptor reactivity for differential diagnosis of sebaceous carcinoma from squamous cell and basal cell carcinoma. Am J Clin Pathol 2010; 134: 22–6.CrossRefGoogle ScholarPubMed
Ostler, DA, Prieto, VG, Reed, JA, Deavers, MT, Lazar, AJ, Ivan, D. Adipophilin expression in sebaceous tumors and other cutaneous lesions with clear cell histology: an immunohistochemical study of 117 cases. Mod Pathol 2010; 23: 567–73.CrossRefGoogle ScholarPubMed
Sramek, B, Lisle, A, Loy, T. Immunohistochemistry in ocular carcinomas. J Cutan Pathol 2008; 35: 641–6.CrossRefGoogle ScholarPubMed
Boussahmain, C, Mochel, MC, Hoang, MP. Perilipin and adipophilin expression in sebaceous carcinoma and mimics. Hum Pathol 2013; 44: 1811–16.CrossRefGoogle ScholarPubMed
Bourlond, F, Velter, C, Cribier, B. Androgen receptor expression in epidermal and adnexal tumours. Ann Dermatol Venereol 2021; 148: 116–21.CrossRefGoogle ScholarPubMed
Ansai, S, Arase, S, Kawana, S, Kimura, T. Immunohistochemical findings of sebaceous carcinoma and sebaceoma: retrieval of cytokeratin expression by a panel of anti-cytokeratin monoclonal antibodies. J Dermatol 2011; 38: 951–8.CrossRefGoogle ScholarPubMed
Oules, B, Deschamps, L, Sohier, P, et al. Diagnostic accuracy of GATA6 immunostaining in sebaceous tumors of the skin. Mod Pathol 2023; 36: 100101. doi: 10.1016/j.modpat.2023.100101.CrossRefGoogle ScholarPubMed
Mittal, R, Araujo, I, Czanner, G, Coupland, SE. Perforin expression in eyelid sebaceous carcinomas: a useful and specific immunomarker for the differential diagnosis of eyelid carcinomas. Acta Opthalmol 2016; 94: e325-30. doi: 10.1111/aos.12972.CrossRefGoogle ScholarPubMed
Ng, JKM, Choi, PCL, Chow, C, et al. PRAME immunostain expression in sebaceous lesions, cutaneous carcinomas and adnexal structures. Pathology 2022; 54: 721–8.CrossRefGoogle ScholarPubMed
Gradecki, SE, Eid, MV, Pramoonjago, P, Wick, MR. Glioma-associated oncogene-1 expression in basal cell carcinoma and its histologic mimics. Am J Dermatopathol 2021; 43: 637–41.CrossRefGoogle ScholarPubMed
Robson, A, Greene, J, Ansari, N, et al. Eccrine porocarcinoma (malignant eccrine poroma): a clinicopathologic study of 69 cases. Am J Surg Pathol 2001; 25: 710–20.CrossRefGoogle ScholarPubMed
Goh, SGN, Dayrit, JF, Calonje, E. Sarcomatoid eccrine porocarcinoma: report of two cases and a review of the literature. J Cutan Pathol 2007; 34: 5560.CrossRefGoogle Scholar
Qureshi, HS, Ormsby, A, Lee, MW, Zarbo, RJ, Ma, CK. The diagnostic utility of p63, CK5/6, CK7 and CK20 in distinguishing primary cutaneous adnexal neoplasms from metastatic carcinomas. J Cutan Pathol 2004; 31: 145–52.CrossRefGoogle Scholar
Pulitzer, M, Desman, G, Busam, KJ. CK7 expression in primary cutaneous squamous cell carcinoma. J Cutan Pathol 2010; 37: 966–72.CrossRefGoogle ScholarPubMed
Mahalingam, M, Nguyen, LP, Richards, JE, Muzikansky, A, Hoang, MP. The diagnostic utility of immunohistochemistry in distinguishing primary skin adnexal carcinomas from metastatic adenocarcinoma to skin: an immunohistochemical reappraisal using cytokeratin 15, nestin, p63, D2-40, and calretinin. Mod Pathol 2010; 23: 713–19.CrossRefGoogle ScholarPubMed
Kurokawa, I, Urakawa, Y, Senba, Y, et al. Keratin profiles may differ between intraepidermal and intradermal invasive eccrine porocarcinoma. Oncol Rep 2006; 16: 473–7.Google ScholarPubMed
Chen, S, Takahara, M, Kido, M, et al. Increased expression of an epidermal stem cell marker, cytokeratin 19, in cutaneous squamous cell carcinoma. Br J Dermatol 2008; 159: 952–5.CrossRefGoogle ScholarPubMed
Yada, K, Kashima, K, Daa, T, Kitano, S, Fujiwara, S, Yokoyama, S. Expression of CD10 in basal cell carcinoma. Am J Dermatopathol 2004; 26: 463–71.CrossRefGoogle ScholarPubMed
Lee, JJ, Mochel, MC, Piris, A, Boussahmain, C, Mahalingam, M, Hoang, MP. p40 exhibits better specificity than p63 in distinguishing primary skin adnexal carcinomas from cutaneous metastases. Hum Pathol 2014; 45: 1078–83.CrossRefGoogle ScholarPubMed
Afshar, M, Deroide, F, Robson, A. BerEP4 is widely expressed in tumors of the sweat apparatus: a source of potential diagnostic error. J Cutan Pathol 2013; 40: 259–64.CrossRefGoogle ScholarPubMed
Goto, K, Ishikawa, M, Hamada, K, et al. Comparison of immunohistochemical expression of cytokeratin 19, c-KIT, BerEP4, GATA3, and NUTM1 between porocarcinoma and squamous cell carcinoma. Am J Dermatopathol 2021; 43: 781–7.CrossRefGoogle ScholarPubMed
Macagno, N, Kervarrec, T, Sohier, P, et al. NUT is a specific immunohistochemical marker for the diagnosis of YAP1-NUTM1-rearranged cutaneous poroid neoplasms. Am J Surg Pathol 2021; 45: 1221–7.CrossRefGoogle ScholarPubMed
Miura, K, Akashi, T, Namiki, T, et al. Engrailed homeobox 1 and cytokeratin 19 are independent diagnostic markers of eccrine porocarcinoma and distinguish it from squamous cell carcinoma. Am J Clin Pathol 2020; 154: 499509.CrossRefGoogle ScholarPubMed
Russell-Goldman, E, Hornick, JL, Hanna, J. Utility of YAP1 and NUT immunohistochemistry in the diagnosis of porocarcinoma. J Cutan Pathol 2021; 48: 403–10.CrossRefGoogle ScholarPubMed
Sekine, S, Kiyono, T, Ryo, E, et al. Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma. J Clin Invest 2019; 129: 3827–32.CrossRefGoogle ScholarPubMed
Folpe, AL, Cooper, K. Best practices in diagnostic immunohistochemistry: pleomorphic cutaneous spindle cell tumors. Arch Pathol Lab Med 2007; 131: 1517–24.CrossRefGoogle ScholarPubMed
Ko, CJ, McNiff, JM, Glusac, EJ. Squamous cell carcinoma with single cell infiltration: a potential diagnostic pitfall and the utility of MNF116 and p63. J Cutan Pathol 2008; 35: 353–7.CrossRefGoogle ScholarPubMed
Bishop, JA, Montgomery, EA, Westra, WH. Use of p40 and p63 immunohistochemistry and human papillomavirus testing as ancillary tools for the recognition of head and neck sarcomatoid carcinoma and its distinction from benign and malignant mesenchymal processes. Am J Surg Pathol 2014; 38: 257–64.CrossRefGoogle ScholarPubMed
Miettinen, M, McCue, PA, Sariomo-Rikala, M, et al. Sox-10 – a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol 2015; 39: 826–35.CrossRefGoogle Scholar
Hultgren, TL, DiMaio, DJ. Immunohistochemical staining of CD10 in atypical fibroxanthomas. J Cutan Pathol 2007; 34: 415–19.CrossRefGoogle ScholarPubMed
Mirza, B, Weedon, D. Atypical fibroxanthoma: a clinicopathological study of 89 cases. Australas J Dermatol 2005; 46: 235–8.CrossRefGoogle ScholarPubMed
Luzar, B, Calonje, E. Morphological and immunohistochemical characteristics of atypical fibroxanthoma with a special emphasis on potential diagnostic pitfalls: a review. J Cutan Pathol 2010; 37: 301–9.CrossRefGoogle ScholarPubMed
Szczepanski, JM, Siddiqui, J, Patel, RM, Harms, PW, Hrycaj, SM, Chan, MP. Expression of SATB2 in primary cutaneous sarcomatoid neoplasms: a potential diagnostic pitfall. Pathology 2023; 55: 350–4.CrossRefGoogle ScholarPubMed
Ha Lan, TT, Chen, SJT, Arps, DP, et al. Expression of the p40 isoform of p63 has high specificity for cutaneous sarcomatoid squamous cell carcinoma. J Cutan Pathol 2014; 41: 831–8.CrossRefGoogle ScholarPubMed
Chokoeva, AA, Tchernev, G, Cardoso, JC, et al. Vulvar sarcomas: Short guideline for histopathological recognition and clinical management. Part 1. Int J Immunopathol Pharmacol 2015; 28: 168–77.Google Scholar
Costa, LC, Leite, C, Cardoso, S, et al. Expression of epithelial-mesenchymal transition markers at the invasive front of oral squamous cell carcinoma. J Appl Oral Sci 2015; 23: 169–78.CrossRefGoogle ScholarPubMed
Mentzel, T, Requena, L, Kaddu, S, et al. Cutaneous myoepithelial neoplasms: clinicopathologic and immunohistochemical study of 20 cases suggesting a continuous spectrum ranging from benign mixed tumor of the skin to cutaneous myoepithelioma and myoepithelial carcinoma. J Cutan Pathol 2003; 30: 294302.CrossRefGoogle ScholarPubMed
Hornick, JL, Fletcher, CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am J Surg Pathol 2003; 27: 1183–96.CrossRefGoogle Scholar
Folpe, AL, Schoolmeester, JK, McCluggage, WG, et al. SMARCB1-deficient vulvar neoplasms: a clinicopathologic, immunohistochemical, and molecular genetic study of 14 cases. Am J Surg Pathol 2015; 39: 836–49.CrossRefGoogle ScholarPubMed
Watanabe, S, Ichikawa, E, Takahashi, H, Otsuka, F. Changes of cytokeratin and involucrin expression in squamous cell carcinomas of the skin during progression to malignancy. Br J Dermatol 1995; 132: 730–9.Google ScholarPubMed
Reddi, DM, Puri, PK. Expression of focal TTF-1 expression in a case of CK7/CK20-positive Merkel cell carcinoma. J Cutan Pathol 2013; 40: 431–3.CrossRefGoogle Scholar
Karpinski, P, Mendez-Pena, JE, Wu, C-L, et al. POU4F3 is a sensitive and specific marker of Merkel cell carcinoma. Mod Pathol 2025; 38: 100627. doi: 10.1016/j.modpat.2024.100627 .CrossRefGoogle ScholarPubMed
Kurokawa, M, Nabeshima, K, Akiyama, Y, et al. CD56: a useful marker for diagnosing Merkel cell carcinoma. J Dermatol Sci 2003; 31: 219–24.CrossRefGoogle ScholarPubMed
Fernández-Figueras, MT, Puig, L, Musulén, E, et al. Expression profiles associated with aggressive behavior in Merkel cell carcinoma. Mod Pathol 2007; 20: 90101.CrossRefGoogle ScholarPubMed
McCalmont, TH. Paranuclear dots of neurofilament reliably identify Merkel cell carcinoma. J Cutan Pathol 2010; 37: 821–3.CrossRefGoogle ScholarPubMed
Wong, SQ, Waldeck, K, Vergara, IA, et al. UV-associated mutations underlie the etiology of MCV-negative Merkel cell carcinomas. Cancer Res 2015; 75: 5228–34.CrossRefGoogle ScholarPubMed
Molina-Ruiz, AM, Santonja, C, Rütten, A, Cerroni, L, Kutzner, H, Requena, L. Immunohistochemistry in the diagnosis of cutaneous viral infections- part II: cutaneous viral infections by parvoviruses, poxviruses, paramyxoviridae, picornaviridae, retroviruses and filoviruses. Am J Dermatopathol 2015; 37: 93106.CrossRefGoogle ScholarPubMed
Requena, L, Kutzner, H, Palmedo, G, et al. Cutaneous involvement in multiple myeloma: a clinicopathologic, immunohistochemical, and cytogenetic study of 8 cases. Arch Dermatol 2003; 139: 475–86.CrossRefGoogle ScholarPubMed
Robson, A, Shukur, Z, Ally, M, et al. Immunocytochemical p63 expression discriminates between primary cutaneous follicle centre cell and diffuse large B-cell lymphoma-leg type, and is of the TAp63 isoform. Histopathology 2016; 69: 1119.CrossRefGoogle ScholarPubMed
Schneider, M, Crimmins, J, Selim, A. An etiology-focused overview of vulvar and penile squamous cell carcinoma and its precursors: similarities, differences and emerging concepts. Diagn Histopathol 2024; 30: 114.CrossRefGoogle Scholar
Jenkins, TM, Mills, AM. Putative precancerous lesions of vulvar squamous cell carcinoma. Semin Diagn Pathol 2021; 38: 2736.CrossRefGoogle ScholarPubMed
Parra-Herran, C, Nucci, MR, Singh, N, et al. HPV-independent, p53-wild-type vulvar intraepithelial neoplasia: a review of nomenclature and the journey to characterize verruciform and acanthotic precursor lesions of the vulva. Mod Pathol 2022; 35: 1317–26.CrossRefGoogle ScholarPubMed
Akbari, A, Pinto, A, Amemiya, Y, Seth, A, Mirkovic, J, Parra-Herran, C. Differentiated exophytic vulvar intraepithelial lesion: Clinicopathologic and molecular analysis documenting its relationship with verrucous carcinoma of the vulva. Mod Pathol 2020; 33: 2011–18.CrossRefGoogle ScholarPubMed
Rakislova, N, Alemany, L, Clavero, O, et al. HPV-independent precursors mimicking high-grade squamous intraepithelial lesions (HSIL) of the vulva. Am J Surg Pathol 2020; 44: 1506–14.CrossRefGoogle ScholarPubMed
Yang, H, Almadani, N, Thompson, EF, et al. Classification of vulvar squamous cell carcinoma and precursor lesions by p16 and p53 immunohistochemistry: considerations, caveats, and an algorithmic approach. Mod Pathol 2023; 36: 100–45.CrossRefGoogle Scholar
Rakislova, N, Alemany, L, Clavero, O, et al. Differentiated vulvar intraepithelial neoplasia-like and lichen sclerosus-like lesions in HPV-associated squamous cell carcinomas of the vulva. Am J Surg Pathol 2018; 42: 828–35.CrossRefGoogle ScholarPubMed
Graham, RP, Arnold, CA, Naini, BV, Lam-Himlin, DM. Basaloid squamous cell carcinoma of the anus revisited. Am J Surg Pathol 2016; 40: 354–60.CrossRefGoogle ScholarPubMed
Gillespie, JJ, MacKay, B. Histogenesis of cloacogenic carcinoma. Fine structure of anal transitional epithelium and cloacogenic carcinoma. Hum Pathol 1978; 9: 579–87.Google ScholarPubMed
WHO Classification of Tumours Editorial Board. Digestive system tumours. Lyon (France): International Agency for Research on Cancer; 2019. (WHO classification of tumours series, 5th ed.; vol. 1). https://publications.iarc.fr/579.Google Scholar
Zhu, X, Jamshed, S, Zou, J, et al. Molecular and immunophenotypic characterization of anal squamous cell carcinoma reveals distinct clinicopathologic groups associated with HPV and TP53 mutation status. Mod Pathol 2021; 34: 1017–30.CrossRefGoogle ScholarPubMed
Patil, DT, Goldblum, JR, Billings, SD. Clinicopathological analysis of basal cell carcinoma of the anal region and its distinction from basaloid squamous cell carcinoma. Mod Pathol 2013; 26: 1382–9.CrossRefGoogle ScholarPubMed
Patil, DT, Yang, B. Utility of human papillomavirus capsid protein L1 and p16 in the assessment and accurate classification of anal squamous intraepithelial lesions. Am J Clin Pathol 2015; 144: 113–21.CrossRefGoogle ScholarPubMed
Kazakov, DV, Spagnolo, DV, Kacerovska, D, Michal, M. Lesions of anogenital mammary-like glands: an update. Adv Anat Pathol 2011; 18: 128.CrossRefGoogle ScholarPubMed
Roberts, JM, Cornall, AM, Ekman, D, et al. Papillary immature metaplasia of the anal canal: a low-grade lesion that can mimic a high-grade lesion. Am J Surg Pathol 2016; 40: 348–53.CrossRefGoogle Scholar
Bartoš, V. Expression of p16 protein in cutaneous basal cell carcinoma: still far from being clearly understood. Acta Dermatovenerol Croat 2020; 28: 43–4.Google ScholarPubMed
Heller, DS, Day, T, Allbritton, JI, et al. Diagnostic criteria for differentiated vulvar intraepithelial neoplasia and vulvar aberrant maturation. J Low Genit Tract Dis 2021; 25: 5770.CrossRefGoogle ScholarPubMed
Madahian, S, Judelson, R, Zhu, X, et al. CD56 expression in basaloid anal squamous cell carcinoma – A potential diagnostic pitfall. Ann Diagn Pathol 2021; 53: 151758. doi: 10.1016/j.anndiagpath.2021.151758.CrossRefGoogle ScholarPubMed
George, E, Swanson, PE, Wick, MR. Neuroendocrine differentiation in basal cell carcinoma: an immunohistochemical study. Am J Dermatopathol 1989; 11: 131–5.CrossRefGoogle ScholarPubMed
Lilo, MT, Chen, Y, LeBlanc, RE. INSM1 is more sensitive and interpretable than conventional immunohistochemical stains used to diagnose Merkel cell carcinoma. Am J Surg Pathol 2018; 42: 1541–8.CrossRefGoogle ScholarPubMed
van Wyk, AC, Moolla, Z, Motala, AI, et al. Merkel cell carcinoma of the anorectum: a case report and review of the literature. Clin J Gastroenterol 2022; 15: 740–5.CrossRefGoogle ScholarPubMed
Chetty, R, Serra, S, Hsieh, E. Basaloid squamous carcinoma of the anal canal with an adenoid cystic pattern: histologic and immunohistochemical reappraisal of an unusual variant. Am J Surg Pathol 2005; 29: 1668–72.CrossRefGoogle ScholarPubMed
WHO Classification of Tumours Editorial Board. Skin tumours [Internet; beta version ahead of print]. Lyon (France): International Agency for Research on Cancer; 2023. (WHO classification of tumours series, 5th ed.; vol. 12). Available from: https://tumourclassification.iarc.who.int/chapters/64.Google Scholar
Boyd, AS, Stasko, TS, Tang, YW. Basaloid squamous cell carcinoma of the skin. J Am Acad Dermatol 2011; 64: 144–51.CrossRefGoogle ScholarPubMed
Vu, TT, Soong, L, Hung, T, Fiorillo, L, Joseph, K. Cutaneous HPV16 and p16 positive basaloid squamous cell carcinoma with brain metastasis: a case report. SAGE Open Med Case Rep 2020; 8: 2050313X20935260.CrossRefGoogle ScholarPubMed
Kurman, RJ, Toki, T, Schiffman, MH. Basaloid and warty carcinomas of the vulva. Distinctive types of squamous cell carcinoma frequently associated with human papillomaviruses. Am J Surg Pathol 1993; 17: 133–45.CrossRefGoogle ScholarPubMed
McCluggage, WG, editor. Chapter, XI. Tumours of the vulva. In: WHO Classification of Tumours Editorial Board. Female genital tumours. Lyon (France): International Agency for Research on Cancer; 2020. pp.419-434(WHO classification of tumours series, 5th ed.; vol. 4).Google Scholar
Serota, AI, Weil, M, Williams, RA, Wollman, JS, Wilson, SE. Anal cloacogenic carcinoma: classification and clinical behavior. Arch Surg 1981; 116: 456–9.CrossRefGoogle ScholarPubMed
Bigby, SM, Eva, LJ, Tous, S, et al. Prevaccine human papillomavirus status in invasive and intraepithelial lesions of the vulva in New Zealand women. J Low Genit Tract Dis 2022; 26: 323–7.CrossRefGoogle ScholarPubMed
Quick, CM. 2 – Squamous Neoplasms of the Vulva. In: Nucci, MR, Parra-Herran, C, editors. Gynecologic Pathology (Second Edition) [Internet]. Philadelphia: Elsevier; 2020 [cited 2024 Apr 27]. p. 4770. (Foundations in Diagnostic Pathology). Available from: www.sciencedirect.com/science/article/pii/B9780323359092000023CrossRefGoogle Scholar
Maniar, KP, Nayar, R. HPV-related squamous neoplasia of the lower anogenital tract: an update and review of recent guidelines. Adv Anat Pathol 2014; 21: 341–58.CrossRefGoogle ScholarPubMed
Darragh, TM, Colgan, TJ, Thomas Cox, J, et al. The lower anogenital squamous terminology standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int J Gynecol Pathol 2013; 32: 76115.CrossRefGoogle ScholarPubMed
Stewart, CJR, Crook, ML. Fascin and cyclin D1 immunoreactivity in non-neoplastic vulvar squamous epithelium, vulvar intraepithelial neoplasia and invasive squamous carcinoma: correlation with Ki67 and p16 protein expression. J Clin Pathol 2014; 67: 319–25.CrossRefGoogle ScholarPubMed
Pirog, EC. Immunohistochemistry and in situ hybridization for the diagnosis and classification of squamous lesions of the anogenital region. Semin Diagn Pathol 2015; 32: 409–18.CrossRefGoogle ScholarPubMed
Ungureanu, C, Socolov, DG, Anton, G, et al. Role of ProEx C immunocytochemistry in cervical high-grade squamous intraepithelial lesions detection. Rom J Morphol Embryol 2021; 62: 1029–34.Google ScholarPubMed
Travé, G, Zanier, K. HPV-mediated inactivation of tumor suppressor p53. Cell Cycle 2016; 15: 2231–2.CrossRefGoogle ScholarPubMed
Maniar, KP, Sanchez, B, Paintal, A, Gursel, DB, Nayar, R. Role of the biomarker p16 in downgrading -IN2 diagnoses and predicting higher-grade lesions. Am J Surg Pathol 2015; 39: 1708–18.CrossRefGoogle Scholar
Dong, F, Kojiro, S, Borger, DR, Growdon, WB, Oliva, E. Squamous cell carcinoma of the vulva: a subclassification of 97 cases by clinicopathologic, immunohistochemical, and molecular features (p16, p53, and EGFR). Am J Surg Pathol 2015; 39: 1045–53.CrossRefGoogle ScholarPubMed
Carreras-Dieguez, N, Saco, A, Del Pino, M, et al. Vulvar squamous cell carcinoma arising on human papillomavirus-independent precursors mimicking high-grade squamous intra-epithelial lesion: a distinct and highly recurrent subtype of vulvar cancer. Histopathology 2023; 82: 731–44.CrossRefGoogle ScholarPubMed
Dongre, HN, Elnour, R, Tornaas, S, et al. TP53 mutation and human papilloma virus status as independent prognostic factors in a Norwegian cohort of vulva squamous cell carcinoma. Acta Obstet Gynecol Scand 2024; 103: 165–75.CrossRefGoogle Scholar
Sah, SP, McCluggage, WG. Florid vulval Paget disease exhibiting p16 immunoreactivity and mimicking classic VIN. Int J Gynecol Pathol 2013; 32: 221–7.CrossRefGoogle ScholarPubMed
Dasgupta, S, Ewing-Graham, PC, van Kemenade, FJ, van Doorn, HC, Noordhoek Hegt, V, Koljenović, S. Differentiated vulvar intraepithelial neoplasia (dVIN): the most helpful histological features and the utility of cytokeratins 13 and 17. Virchows Arch 2018; 473: 739–47.CrossRefGoogle ScholarPubMed
Dasgupta, S, Ewing-Graham, PC, Swagemakers, SMA, et al. Precursor lesions of vulvar squamous cell carcinoma – histology and biomarkers: A systematic review. Crit Rev Oncol Hematol 2020; 147: 102866. doi: 10.1016/j.critrevonc.2020.102866.CrossRefGoogle ScholarPubMed
Singh, N, Leen, SL, Han, G, et al. Expanding the morphologic spectrum of differentiated VIN (dVIN) through detailed mapping of cases with p53 loss. Am J Surg Pathol 2015; 39: 5260.CrossRefGoogle ScholarPubMed
Tessier-Cloutier, B, Kortekaas, KE, Thompson, E, et al. Major p53 immunohistochemical patterns in in situ and invasive squamous cell carcinomas of the vulva and correlation with TP53 mutation status. Mod Pathol 2020; 33: 1595–605.CrossRefGoogle ScholarPubMed
Thompson, EF, Wong, RWC, Trevisan, G, et al. p53-abnormal “fields of dysplasia” in human papillomavirus–independent vulvar squamous cell carcinoma impacts margins and recurrence risk. Mod Pathol 2023 Feb; 36(2): 100010. doi: 10.1016/j.modpat.2022.100010.CrossRefGoogle Scholar
McMullen-Tabry, ER, Schechter, SA, Wang, GY, et al. p53/CK17 dual stain improves accuracy of distinction between differentiated vulvar intraepithelial neoplasia and its mimics. Int J Gynecol Pathol 2022; 41: 298306.CrossRefGoogle ScholarPubMed
Dasgupta, S, Koljenović, S, van den Bosch, TPP, et al. Evaluation of immunohistochemical markers, CK17 and SOX2, as adjuncts to p53 for the diagnosis of differentiated vulvar intraepithelial neoplasia (dVIN). Pharmaceuticals 2021; 14: 324. doi: 10.3390/ph14040324.CrossRefGoogle ScholarPubMed
Roberts, JNT, Bentz, JL, LeBlanc, RE, Cass, I. Correlation of histopathologic findings with clinical predictors of disease recurrence and progression to vulvar carcinoma in patients with differentiated vulvar intraepithelial neoplasia (dVIN). Gynecol Oncol Rep 2024; 52: 101358. doi: 10.1016/j.gore.2024.101358.CrossRefGoogle ScholarPubMed
Cook, E, Van de Vijver, K, Parra-Herran, C. Diagnosis of verruciform acanthotic vulvar intra-epithelial neoplasia (vaVIN) using CK17, SOX2 and GATA3 immunohistochemistry. Histopathology 2024; 84: 1212–23.CrossRefGoogle ScholarPubMed
Zare, SY, Fard, EV, Fadare, O. GATA3 immunohistochemistry as a diagnostic adjunct for differentiated vulvar intraepithelial neoplasia: utility and limitations. Hum Pathol 2023; 139: 5564.CrossRefGoogle Scholar
Carreras-Dieguez, N, Saco, A, Del Pino, M, et al. Human papillomavirus and p53 status define three types of vulvar squamous cell carcinomas with distinct clinical, pathological, and prognostic features. Histopathology 2023; 83: 1730.CrossRefGoogle ScholarPubMed
Nascimento, AF, Granter, SR, Cviko, A, Yuan, L, Hecht, JL, Crum, CP. Vulvar acanthosis with altered differentiation: a precursor to verrucous carcinoma? Am J Surg Pathol 2004; 28: 638–43.CrossRefGoogle ScholarPubMed
Roy, SF, Wong, J, Le Page, C, et al. DEVIL, VAAD and vLSC constitute a spectrum of HPV-independent, p53-independent intra-epithelial neoplasia of the vulva. Histopathology 2021; 79: 975–88.CrossRefGoogle ScholarPubMed
De Luca, DA, Papara, C, Vorobyev, A, et al. Lichen sclerosus: The 2023 update. Front Med 2023; 10: 1106318. doi: 10.3389/fmed.2023.1106318.CrossRefGoogle ScholarPubMed
Gleue, CA, Xie, F, Deschaine, M, et al. Differential proteomic expression in indolent vulvar lichen sclerosus, transforming vulvar lichen sclerosus and normal vulvar tissue. Exp Dermatol 2022; 31: 1920–6.CrossRefGoogle ScholarPubMed
Chaudhari, AS, McFadden, JR, Bentz, J, Evans, RH, Selim, MA, Sriharan, A. A mimicker of differentiated vulvar intraepithelial neoplasia: reactive atypia from noncompliance with lichen sclerosus therapy. Am J Dermatopathol 2024; 46: 519–22.CrossRefGoogle ScholarPubMed
Liegl, B, Regauer, S. p53 immunostaining in lichen sclerosus is related to ischaemic stress and is not a marker of differentiated vulvar intraepithelial neoplasia (d-VIN). Histopathology 2006; 48: 268–74.CrossRefGoogle Scholar
Lee, ES, Allen, D, Scurry, J. Pseudoepitheliomatous hyperplasia in lichen sclerosus of the vulva. Int J Gynecol Pathol 2003; 22: 5762.CrossRefGoogle ScholarPubMed
Rakislova, N, Carreras-Dieguez, N, Manzotti, C, et al. Differential etiopathogenic features of vulvar squamous cell carcinomas in sub-Saharan Africa and Europe. Int J Cancer 2023; 152: 496503.CrossRefGoogle ScholarPubMed
Proctor, L, Hoang, L, Moore, J, et al. Association of human papilloma virus status and response to radiotherapy in vulvar squamous cell carcinoma. Int J Gynecol Cancer 2020; 30: 100–6.CrossRefGoogle ScholarPubMed
Rakislova, N, Alemany, L, Clavero, O, et al. p53 immunohistochemical patterns in HPV-independent squamous cell carcinomas of the vulva and the associated skin lesions: a study of 779 cases. Int J Mol Sci 2020; 21: 8091. doi: 10.3390/ijms21218091.CrossRefGoogle ScholarPubMed
Baandrup, L, Sand, FL, Aalborg, GL, Nøttrup, TJ, Fiehn, AMK, Kjaer, SK. PD-L1 expression in vulvar cancer: a systematic review and meta-analysis. Histopathology 2024; 84: 742–52.CrossRefGoogle ScholarPubMed
Anic, GM, Lee, JH, Stockwell, H, et al. Incidence and human papillomavirus (HPV) type distribution of genital warts in a multinational cohort of men: the HPV in men study. J Infect Dis 2011; 204: 1886–92.CrossRefGoogle Scholar
Olesen, TB, Sand, FL, Rasmussen, CL, et al. Prevalence of human papillomavirus DNA and p16(INK4a) in penile cancer and penile intraepithelial neoplasia: a systematic review and meta-analysis. Lancet Oncol 2019; 20: 145–58.CrossRefGoogle ScholarPubMed
Shabbir, M, Minhas, S, Muneer, A. Diagnosis and management of premalignant penile lesions. Ther Adv Urol 2011; 3: 151–8.CrossRefGoogle ScholarPubMed
Irshad, U, Puckett, Y. Giant condylomata acuminata of Buschke and Lowenstein. In: StatPearls [www.ncbi.nlm.nih.gov/books/NBK560714/]. Treasure Island (FL): StatPearls Publishing. 2024.Google Scholar
Shabbir, M, Barod, R, Hegarty, PK, Minhas, S. Primary prevention and vaccination for penile cancer. Ther Adv Urol 2013; 5: 161–9.CrossRefGoogle ScholarPubMed
Canete-Portillo, S, Velazquez, EF, Kristiansen, G, et al. Report from the International Society of Urological Pathology (ISUP) consultation conference on Molecular Pathology of Urogenital Cancers V: Recommendations on the use of immunohistochemical and molecular biomarkers in penile cancer. Am J Surg Pathol 2020; 44: e80–e6.CrossRefGoogle ScholarPubMed
Stiff, KM, Cohen, PR. Vegas (verruciform genital-associated) xanthoma: a comprehensive literature review. Dermatol Ther 2017; 7: 6579.CrossRefGoogle ScholarPubMed
Trinh, NB, Tran, GH. Penile verruciform xanthoma mimicking large genital wart. Int J Dermatol 2022; 61: e43–e4.CrossRefGoogle ScholarPubMed
Fernandez-Nestosa, MJ, Clavero, O, Sanchez, DF, et al. Penile intraepithelial neoplasia: Distribution of subtypes, HPV genotypes and p16(INK4a) in 84 international cases. Hum Pathol 2023; 131: 18.CrossRefGoogle ScholarPubMed
Straub Hogan, MM, Spieker, AJ, Orejudos, M, et al. Pathological characterization and clinical outcome of penile intraepithelial neoplasia variants: a North American series. Mod Pathol 2022; 35: 1101–9.CrossRefGoogle ScholarPubMed
Velazquez, EF, Chaux, A, Cubilla, AL. Histologic classification of penile intraepithelial neoplasia. Semin Diagn Pathol 2012; 29: 96102.CrossRefGoogle ScholarPubMed
Chaux, A, Pfannl, R, Lloveras, B, et al. Distinctive association of p16INK4a overexpression with penile intraepithelial neoplasia depicting warty and/or basaloid features: a study of 141 cases evaluating a new nomenclature. Am J Surg Pathol 2010; 34: 385–92.CrossRefGoogle ScholarPubMed
Watkins, JC, Yang, E, Crum, CP, et al. Classic vulvar intraepithelial neoplasia with superimposed lichen simplex chronicus: a unique variant mimicking differentiated vulvar intraepithelial neoplasia. Int J Gynecol Pathol 2019; 38: 175–82.CrossRefGoogle ScholarPubMed
Griesinger, LM, Walline, H, Wang, GY, et al. Expanding the morphologic, immunohistochemical, and HPV genotypic features of high-grade squamous intraepithelial lesions of the vulva with morphology mimicking differentiated vulvar intraepithelial neoplasia and/or lichen sclerosus. Int J Gynecol Pathol 2021; 40: 205–13.CrossRefGoogle ScholarPubMed
Chaux, A, Sanchez, DF, Fernandez-Nestosa, MJ, et al. The dual pathogenesis of penile neoplasia: the heterogeneous morphology of human papillomavirus-related tumors. Asian J Urol 2022; 9: 349–58.Google ScholarPubMed
Cornejo, KM, Hutchinson, L, O’Donnell, P, et al. Molecular profiling of syringocystadenocarcinoma papilliferum reveals RAS-activating mutations. Arch Pathol Lab Med 2024; 148: 215–22.CrossRefGoogle ScholarPubMed
Regauer, S, Ermakov, M, Kashofer, K. The spectrum of HPV-independent penile intraepithelial neoplasia: a proposal for subclassification. Am J Surg Pathol 2023; 47: 1449–60.Google ScholarPubMed
Canete-Portillo, S, Sanchez, DF, Cubilla, AL. Pathology of invasive and intraepithelial penile neoplasia. Eur Urol Focus 2019; 5: 713–17.Google ScholarPubMed
Guerrero, J, Trias, I, Veloza, L, et al. HPV-negative penile intraepithelial neoplasia (PeIN) with basaloid features. Am J Surg Pathol 2022; 46: 1071–7.CrossRefGoogle ScholarPubMed
Eich, ML, Del Carmen Rodriguez Pena, M, Schwartz, L, et al. Morphology, p16, HPV, and outcomes in squamous cell carcinoma of the penis: a multi-institutional study. Hum Pathol 2020; 96: 7986.CrossRefGoogle ScholarPubMed
Chaux, A, Tamboli, P, Ayala, A, et al. Warty-basaloid carcinoma: clinicopathological features of a distinctive penile neoplasm. Report of 45 cases. Mod Pathol 2010; 23: 896904.CrossRefGoogle ScholarPubMed
Cubilla, AL, Reuter, VE, Gregoire, L, et al. Basaloid squamous cell carcinoma: a distinctive human papilloma virus-related penile neoplasm: a report of 20 cases. Am J Surg Pathol 1998; 22: 755–61.CrossRefGoogle ScholarPubMed
Cubilla, AL, Velazques, EF, Reuter, VE, Oliva, E, Mihm, MC Jr., Young, RH. Warty (condylomatous) squamous cell carcinoma of the penis: a report of 11 cases and proposed classification of ‘verruciform’ penile tumors. Am J Surg Pathol 2000; 24: 505–12.CrossRefGoogle ScholarPubMed
Zhang, M, Adeniran, AJ, Vikram, R, et al. Carcinoma of the urethra. Hum Pathol 2018; 72: 3544.CrossRefGoogle ScholarPubMed
Chaux, A, Han, JS, Lee, S, et al. Immunohistochemical profile of the penile urethra and differential expression of GATA3 in urothelial versus squamous cell carcinomas of the penile urethra. Hum Pathol 2013; 44: 2760–7.CrossRefGoogle ScholarPubMed
Ermakov, MS, Kashofer, K, Regauer, S. Different mutational landscapes in human papillomavirus-induced and human papillomavirus-independent invasive penile squamous cell cancers. Mod Pathol 2023; 36: 100250. doi: 10.1016/j.modpat.2023.100250.CrossRefGoogle Scholar
Kashofer, K, Winter, E, Halbwedl, I, et al. HPV-negative penile squamous cell carcinoma: disruptive mutations in the TP53 gene are common. Mod Pathol 2017; 30: 1013–20.CrossRefGoogle ScholarPubMed
Tessier-Cloutier, B, Pors, J, Thompson, E, et al. Molecular characterization of invasive and in situ squamous neoplasia of the vulva and implications for morphologic diagnosis and outcome. Mod Pathol 2021; 34: 508–18.CrossRefGoogle ScholarPubMed
Akbari, A, Pinto, A, Amemiya, Y, Seth, A, Mirkovic, J, Parra-Herran, C. Differentiated exophytic vulvar intraepithelial lesion: Clinicopathologic and molecular analysis documenting its relationship with verrucous carcinoma of the vulva. Mod Pathol 2020; 33: 2011–18.CrossRefGoogle ScholarPubMed
Watkins, JC, Howitt, BE, Horowitz, NS, et al. Differentiated exophytic vulvar intraepithelial lesions are genetically distinct from keratinizing squamous cell carcinomas and contain mutations in PIK3CA. Mod Pathol 2017; 30: 448–58.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×