Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-w9n4q Total loading time: 0 Render date: 2025-06-19T01:32:47.125Z Has data issue: false hasContentIssue false

Chapter 11 - Immunobullous Disorders

Published online by Cambridge University Press:  17 June 2025

Mai P. Hoang
Affiliation:
Harvard Medical School, Boston
Get access

Summary

The technique of immunofluorescence, employing similar principles as immunohistochemistry, is used daily in dermatopathology. These studies include direct immunofluorescence and indirect immunofluorescence using either monkey esophagus or rat bladder or NaCl-split skin as substrate. In this chapter, the role of immunofluorescence studies in classifying immunobullous disorders and diagnosing vasculitis and connective tissue disease is outlined.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Coons, AH, Creech, HJ, Jones, RN. Immunological properties of an antibody containing fluorescent group. Pro Soc Exp Biol Med 1941; 47: 200–2.CrossRefGoogle Scholar
Coons, AH, Kaplan, MH. Localization of antigen in tissue cells. II. Improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 1950; 91: 113.CrossRefGoogle Scholar
Jordon, RE, Triftshauser, CT, Schroeter, AL. Direct immunofluorescent studies of pemphigus and bullous pemphigoid. Arch Dermatol 1971; 103: 486–91.CrossRefGoogle ScholarPubMed
Beutner, EH, Jordon, RE. Demonstration of skin antibodies in sera of pemphigus vulgaris patients by indirect immunofluorescent staining. Proc Soc Exp Biol Med 1964; 117: 505–10.CrossRefGoogle ScholarPubMed
Lemcke, S, Sokolowski, S, Rieckhoff, N, et al. Automated direct immunofluorescence analyses of skin biopsies. J Cutan Pathol 2016; 43: 227–35.CrossRefGoogle ScholarPubMed
Stokes, GG. On the change of refrangibility of light. Trans Cambridge Philos Soc 1852; 9: 399.Google Scholar
Arbesman, J, Grover, R, Helm, TN, Beutner, EH. Can direct immunofluorescence testing still be accurate if performed on biopsy specimens after brief inadvertent immersion in formalin? J Am Acad Dermatol 2011; 65: 106–11.CrossRefGoogle ScholarPubMed
Gammon, WR, Briggarman, RA, Imman, AO 3rd, Quenn, LL, Wheeler, CE. Differentiating anti-lamina lucida and anti-sublamina dense anti-BMZ antibodies by indirect immunofluorescence on 1.0 M sodium chloride-separated skin. J Invest Dermatol 1984; 82: 139–44.Google Scholar
Desai, BV, Harmon, RM, Green, KJ. Desmosomes at a glance. J Cell Sci 2009; 122: 4401–7.CrossRefGoogle ScholarPubMed
Kridin, K, Patel, PM, Jones, VA, Cordova, A, Amber, KT. IgA pemphigus: a systematic review. J Am Acad Dermatol 2020; 82: 1386–92.CrossRefGoogle ScholarPubMed
Manjaly, P, Sanchez, K, Gregoire, S, Ly, S, Kamal, K, Mostaghimi, A. Superficial and bullous neutrophilic dermatoses: Sneddon-Wilkinson, IgA pemphigus, and bullous lupus. Dermatol Clin 2024; 42: 307–15.CrossRefGoogle ScholarPubMed
Espana, A, Gimenez-Azcarate, A, Ishii, N, et al. Antidesmocollin 1 autoantibody negative subcorneal pustular dermatosis-type IgA pemphigus associated with multiple myeloma. Br J Dermatol 2015; 172: 296–8.CrossRefGoogle ScholarPubMed
Asashina, A, Koga, H, Suzuki, Y, Hashimoto, T. IgA pemphigus associated with diffuse large B-cell lymphoma showing unique reactivity with desmocollins: unusual clinical and histopathologic features. Br J Dermatol 2013; 168: 224–6.Google Scholar
Bruijn, TVM, Geraedts, A, Vlahu, CA, Jaspars, LH, Elshot, YS. IgA pemphigus as an immune checkpoint inhibitor-associated skin manifestation. JAAD Case Rep 2024; 47: 41–3.Google Scholar
Hashimoto, T, Ebihara, T, Nishikawa, T. Studies of autoantigens recognized by IgA anti-keratinocyte cell surface antibodies. J Dermatol Sci 1996; 12: 1017.CrossRefGoogle ScholarPubMed
Hashimoto, T, Komai, A, Futei, Y, Nishikawa, T, Amagai, M. Detection of IgA autoantibodies to desmogleins by an enzyme-linked immunosorbent assay: the presence of new minor subtypes of IgA pemphigus. Arch Dermatol 2001; 137: 735–8.Google Scholar
Geller, S, Gat, A, Zeeli, T, et al. The expanding spectrum of IgA pemphigus: a case report and review of the literature. Br J Dermatol 2014; 171: 650–6.CrossRefGoogle ScholarPubMed
Bruckner, AL, Fitzpatrick, JE, Hashimoto, T, Weston, WL, Morelli, JG. Atypical IgA/IgG pemphigus involving the skin, oral mucosa, and colon in a child: a novel variant of IgA pemphigus? Pediatr Dermatol 2005; 22: 321–7.CrossRefGoogle Scholar
Zaraa, I, Kerkeni, N, Sellami, M, et al. IgG/IgA pemphigus with IgG and IgA antidesmoglein 3 antibodies and IgA antidesmoglein 1 antibodies detected by enzyme-linked immunosorbent assay: a case report and review of the literature. Int J Dermatol 2010; 49: 293302.CrossRefGoogle ScholarPubMed
Kowalewski, C, Hashimoto, T, Amagai, M, Jablonska, S, Mackiewicz, W, Wozniak, K. IgA/IgG pemphigus: a new atypical subset of pemphigus? Acta Derm Venereol 2006; 86: 357–8.CrossRefGoogle ScholarPubMed
Mentink, LF, de Jong, MC, Kloosterhuis, GJ, Zuiderveen, J, Jonkman, MF, Pas, HH. Coexistence of IgA antibodies to desmogleins 1 and 3 in pemphigus vulgaris, pemphigus foliaceus and paraneoplastic pemphigus. Br J Dermatol 2007; 156: 635–41.CrossRefGoogle ScholarPubMed
Toosi, S, Collins, JW, Lohse, CM, et al. Clinicopathologic features of IgG/IgA pemphigus in comparison with classic (IgG) and IgA pemphigus. Int J Dermatol 2016; 55: e184–90.CrossRefGoogle ScholarPubMed
Cho, YT, Fu, KT, Chen, KL, Chang, YL, Chu, CY. Clinical, histopathologic, and immunohistochemical features of patients with IgG/IgA pemphigus. Biomedicines 2022; 10: 1197. doi: 10.3390/biomedicines10051197.CrossRefGoogle ScholarPubMed
Hashimoto, T, Teye, K, Hashimoto, K, et al. Clinical and immunological study of 30 cases with both IgG and IgA anti-keratinocyte cell surface autoantibodies toward the definition of intercellular IgG/IgA dermatosis. Front Immunol 2018; 9: 994. doi: 10.3389/fimmu.2018.00994.CrossRefGoogle ScholarPubMed
Criscito, MC, Cohen, JM, Toosi, S, et al. A retrospective study on the clinicopathologic features of IgG/IgA pemphigus. J Am Acad Dermatol 2021; 85: 237–40.CrossRefGoogle ScholarPubMed
Barcelos, VM, Vale, ECSD, Araujo, MG, Bittencourt, FV. Epidemiological and clinical study of cases of endemic pemphigus foliaceus and pemphigus vulgaris in a reference center in the state of Minas Gerais, Brazil. An Bras Dermatol 2024; 99: 4352.CrossRefGoogle Scholar
Qian, Y, Jeong, JS, Maldonado, M, et al. Cutting edge: Brazilian pemphigus foliaceus anti-desmoglein 1 autoantibodies cross-react with sand fly salivary LJM11 antigen. J Immunol 2012; 189: 1535–9.CrossRefGoogle ScholarPubMed
Moraes, ME, Fernandez-Vina, M, Lazaro, A, et al. An epitope in the third hypervariable region of the DRB1 gene is involved in the susceptibility to endemic pemphigus foliaceus (fogo selvagem) in three different Brazilian populations. Tissue Antigens 1997; 49: 3540.CrossRefGoogle ScholarPubMed
Kunadia, A, Moschella, S, McLemore, J, Sami, N. Localized pemphigus foliaceus: diverse presentations, treatment, and review of the literature. Indian J Dermatol 2023; 68: 123. doi: 10.4103/ijd.ijd_324_22.CrossRefGoogle ScholarPubMed
Norikawa, N, Igari, S, Ishikawa, M, et al. Six cases of erythrodermic pemphigus foliaceus: a case report. Case Rep Dermatol 2022; 14: 258–63.CrossRefGoogle ScholarPubMed
Howard, MS, Yepes, MM, Maldonado-Estrada, JG, et al. Broad histopathologic patterns of non-glabrous skin and glabrous skin from patients with a new variant of endemic pemphigus foliaceus – part 1. J Cutan Pathol 2010; 37: 222–30.CrossRefGoogle ScholarPubMed
Moro, F, Sinagra, JLM, Salemme, A, et al. Pemphigus: trigger and predisposing factors. Front Med 2023; 10: 1326359. doi: 10.3389/fmed.2023.1326359.CrossRefGoogle ScholarPubMed
Brenner, S, Goldberg, I. Drug-induced pemphigus. Clin Dermatol 2011; 29: 455–7.CrossRefGoogle ScholarPubMed
Parameswaran, A, Attwood, K, Sato, R, Seiffert-Sinha, K, Sinha, AA. Identification of a new disease cluster of pemphigus vulgaris with autoimmune thyroid disease, rheumatoid arthritis and type I diabetes. Br J Dermatol 2015; 172: 7129–38.CrossRefGoogle ScholarPubMed
Kavala, M, Topaloqlu Demir, F, Zindanci, I, et al. Genital involvement in pemphigus vulgaris (PV): correlation with clinical and cervicovaginal Pap smear findings. J Am Acad Dermatol 2015; 73: 655–9.CrossRefGoogle ScholarPubMed
Sriram, S, Hasan, S, Mansoori, S, Saeed, S, Banerjee, A, Ramalingam, K. Juvenile pemphigus vulgaris: Literature review and a rare case report. Clin Case Rep 2024; 12: e8954. doi: 10.1002/ccr3.8954.CrossRefGoogle Scholar
Luo, Y, Fei, X, Wang, M, et al. Epidemiology of malignant tumors in patients with pemphigus: an analysis of trends from 1955 to 2021. Clin Exp Med 2024; 24: 100. doi: 10.1007/s10238-024-01354-8.CrossRefGoogle ScholarPubMed
Ghaedi, F, Etesami, I, Aryanian, Z, et al. Drug-induced pemphigus: a systematic review of 170 patients. Int Immunopharmacol 2021; 92: 107299. doi: 10.1016/j.intimp.2020.107299.CrossRefGoogle ScholarPubMed
Zhou, C, Yu, Y, Elston, DM. Diagnostic value of eccrine glands and hair follicles in direct immunofluorescent analysis of pemphigus vulgaris and bullous pemphigoid. J Cutan Pathol 2016; 43: 334–8.CrossRefGoogle ScholarPubMed
Alexandru, A, Zurac, S, Salavastru, CM, et al. Direct immunofluorescence on hair follicles: present and future perspectives. Am J Dermatopathol 2013; 35: 472–6.CrossRefGoogle ScholarPubMed
Kamaresan, M, Rai, R, Sandhya, V. Immunofluorescence of the outer root sheath: an aid to diagnosis in pemphigus. Clin Exp Dermatol 2011; 36: 298301.CrossRefGoogle Scholar
Giurdanella, F, Diercks, GF, Jonkman, MF, Pas, HH. Laboratory diagnosis of pemphigus: direct immunofluorescence remains the gold standard. Br J Dermatol 2016; 175: 185–6.CrossRefGoogle ScholarPubMed
Zhang, X, Hyjek, E, Soltani, K, Petronic-Rosic, V, Shea, CR. Immunohistochemistry for immunoglobulin G4 on paraffin sections for the diagnosis of pemphigus. Arch Pathol Lab Med 2012; 136: 1402–7.CrossRefGoogle ScholarPubMed
Villani, AP, Chouvet, B, Kanitakis, J. Application of C4d immunohistochemistry on routinely processed tissue sections for the diagnosis of autoimmune bullous dermatoses. Am J Dermatopathol 2016; 38: 186–8.CrossRefGoogle ScholarPubMed
Pfaltz, K, Mertz, K, Rose, C, Scheidegger, P, Pfaltz, M, Kempf, W. C3d immunohistochemistry on formalin-fixed tissue is a valuable tool in the diagnosis of bullous pemphigoid of the skin. J Cutan Pathol 2010; 37: 654–8.CrossRefGoogle ScholarPubMed
Karabağ, S, Zorlu, Ö. Diagnosis of autoimmune bullous dermatoses: comparative analysis of immunohistochemical staining using C4d, C3d, IgG, and IgG4 in lesional tissues and perilesional frozen skin samples. Ann Diagn Pathol 2024; 73: 152367. doi: 10.1016/j.anndiagpath.2024.152367.CrossRefGoogle ScholarPubMed
Wu, N, Cai, Y, Wu, F, Liang, Y, Liu, S, Zhang, P, Liu, Y. C3d Immunohistochemical staining on paraffin-embedded tissue for diagnosis of pemphigus. Arch Pathol Lab Med 2024; 148: 1022–7.CrossRefGoogle ScholarPubMed
Mergler, R, Kerstan, A, Schmidt, E, Goebeler, M, Benoit, S. Atypical clinical and serological manifestation of pemphigus vegetans: a case report and review of the literature. Case Rep Dermatol 2017; 9: 121–30.CrossRefGoogle ScholarPubMed
Jain, VK, Dixit, VB, Mohan, H. Pemphigus vegetans in an unusual site. Int J Dermatol 1989; 28: 352–3.CrossRefGoogle Scholar
Cozzani, E, Christana, K, Mastrogiacomo, A, et al. Pemphigus vegetans Neumann type with anti-desmoglein and anti-periplakin autoantibodies. Eur J Dermatol 2007; 17: 530–3.Google ScholarPubMed
Kimura, A, Makino, T, Kitayama, S, et al. Immunohistopathological analyses of a case of pemphigus vegetans with antibodies against desmoglein 1 and desmocollins 1–3. J Dermatol 2024; Jul 29. doi: 10.1111/1346-8138.17410.CrossRefGoogle Scholar
Senear, FE, Usher, B. An unusual type of pemphigus combining features of lupus erythematosus. Arch Derm Syphilol 1926; 13: 761–81.CrossRefGoogle Scholar
Hacker-Foegen, MK, Janson, M, Amagai, M, Fairley, JA, Lin, MS. Pathogenicity and epitope characteristics of anti-desmoglein-1 from pemphigus foliaceus patients expressing only IgG1 autoantibodies. J Invest Dermatol 2003; 121: 1373–8.CrossRefGoogle ScholarPubMed
Oktarina, DA, Poot, AM, Kramer, D, Diercks, GF, Jonkman, MF, Pas, HH. The IgG “lupus-band” deposition pattern of pemphigus erythematosus. Arch Dermatol 2012; 148: 1173–8.CrossRefGoogle ScholarPubMed
Amerian, ML, Ahmed, AR. Pemphigus erythematosus. J Am Acad Dermatol 1984; 10: 215–22.CrossRefGoogle ScholarPubMed
Hobbs, LK, Noland, MB, Raghavan, SS, Gru, AA. Pemphigus erythematosus: a case series from a tertiary academic center and literature review. J Cutan Pathol 2021; 48: 1038–50.CrossRefGoogle ScholarPubMed
Chorzelski, T, Jablonska, S, Blaszczyk, M. Immunopathological investigations in the Senear-Usher syndrome (coexistence of pemphigus and lupus erythematosus). Br J Dermatol 1968; 80: 211–17.CrossRefGoogle ScholarPubMed
Anhalt, GJ, Kim, SC, Stanley, JR, et al. Paraneoplastic pemphigus: an autoimmune mucocutaneous disease associated with neoplasia. N Engl J Med 1990; 323: 1729–35.CrossRefGoogle ScholarPubMed
Camisa, C, Helm, TN. Paraneoplastic pemphigus is a distinct neoplasia induced autoimmune disease. Arch Dermatol 1993; 129: 883–6.CrossRefGoogle ScholarPubMed
Svoboda, SA, Huang, S, Liu, X, Hsu, S, Motaparthi, K. Paraneoplastic pemphigus: revised diagnostic criteria based on literature analysis. J Cutan Pathol 2021; 48: 1133–8.CrossRefGoogle ScholarPubMed
Ohzono, A, Sogame, R, Li, X, et al. Clinical and immunological findings in 104 cases of paraneoplastic pemphigus. Br J Dermatol 2015; 173: 1447–52.CrossRefGoogle ScholarPubMed
Anderson, HJ, Huang, S, Lee, JB. Paraneoplastic pemphigus/paraneoplastic autoimmune multiorgan syndrome: part I. Clinical overview and pathophysiology. J Am Acad Dermatol 2024; 91: 110.CrossRefGoogle ScholarPubMed
Czernik, A, Camilleri, M, Pittelkow, MR, Grando, SA. Paraneoplastic autoimmune multiorgan syndrome: 20 years after. Int J Dermatol 2011; 50: 905–14.CrossRefGoogle ScholarPubMed
Horn, TD, Anhalt, GJ. Histologic features of paraneoplastic pemphigus. Arch Dermatol 1992; 128: 1091–5.CrossRefGoogle ScholarPubMed
Poot, AM, Siland, J, Jonkman, MF, Pas, HH, Diercks, GF. Direct and indirect immunofluorescence staining patterns in the diagnosis of paraneoplastic pemphigus. Br J Dermatol 2016; 174: 912–15.CrossRefGoogle ScholarPubMed
Maciejowska, E, Jablonska, S, Chorzelski, T. Is pemphigus herpetiformis an entity? Int J Dermatol 1987; 26: 571–7.CrossRefGoogle ScholarPubMed
Higashida, S, Nishimura, K, Muneishi, Y, et al. A case of refractory pemphigus herpetiformis with positive anti-desmoglein 1 antibody: case report and literature review to revisit the disease characteristics of 167 cases. Indian J Dermatol 2024; 69: 283. doi: 10.4103/ijd.ijd_1015_23.CrossRefGoogle ScholarPubMed
Hayder, F, Bahloul, E, Sellami, K, et al. Pemphigus herpetiformis in a 4-year-old child: case report and review of the literature. Clin Case Rep 2022; 10: e05567. doi: 10.1002/ccr3.5567.CrossRefGoogle Scholar
Costa, LMC, Cappel, MA, Keeling, JH. Clinical, pathologic, and immunologic features of pemphigus herpetiformis: a literature review and proposed diagnostic criteria. Int J Dermatol 2019; 58: 9971007.CrossRefGoogle ScholarPubMed
Robinson, ND, Hashimoto, T, Amagai, M, Chan, LS. The new pemphigus variants. J Am Acad Dermatol 1999; 40: 649–71.CrossRefGoogle ScholarPubMed
Ohata, C, Koga, H, Teye, K, et al. Concurrence of bullous pemphigoid and herpetiform pemphigus with IgG antibodies to desmogleins 1/3 and desmocollins 1–3. Br J Dermatol 2013; 168: 879–81.CrossRefGoogle ScholarPubMed
Duarte, IB, Bastazini, I Jr, Barreto, JA, Carvalho, CV, Nunes, AJ. Pemphigus herpetiformis in childhood. Pediatr Dermatol 2010; 27: 488–91.CrossRefGoogle ScholarPubMed
Ishii, K, Amagai, M, Komai, A, et al. Desmoglein 1 and desmoglein 3 are the target autoantigens in herpetiform pemphigus. Arch Dermatol 1999; 135: 943–7.CrossRefGoogle ScholarPubMed
Schiavo, AL, Ruocco, E, Brancaccio, G, Caccavale, S, Ruocco, V, Wolf, R. Bullous pemphigoid: etiology, pathogenesis, and inducing factors: facts and controversies. Clin Dermatol 2013; 31: 391–9.CrossRefGoogle ScholarPubMed
Hertl, M, Schmidt, T. Underrecognition of the heterogeneous clinical spectrum of bullous pemphigoid. JAMA Dermatol 2013: 149: 954–5.CrossRefGoogle ScholarPubMed
Cozzani, E, Gasparini, G, Buriando, M, Drago, F, Parodi, A. Atypical presentations of bullous pemphigoid: clinical and immunopathological aspects. Autoimmun Rev 2015; 14: 438–45.CrossRefGoogle ScholarPubMed
Marren, P, Wojnarowska, F, Venning, V, Wilson, C, Nayar, M. Vulvar involvement in auto-immune bullous diseases. J Reprod Med 1993; 38: 101–7.Google Scholar
Kawsar, A, Edwards, C, Patel, P, et al. Checkpoint inhibitor-associated bullous cutaneous immune-related adverse events: a multicentre observational study. Br J Dermatol 2022; 187: 981–7.CrossRefGoogle ScholarPubMed
Arechalde, A, Braun, RP, Calza, AM, et al. Childhood bullous pemphigoid associated with IgA antibodies against BP180 or BP230 antigens. Br J Dermatol 1999; 140: 112–18.CrossRefGoogle ScholarPubMed
Collier, P, Wojnarowska, F, Allen, J, Kirtschiq, G. Molecular overlap of the IgA target antigens in the subepidermal blistering diseases. Dermatology 1994; 189: 105–7.CrossRefGoogle ScholarPubMed
Korman, NJ. Bullous pemphigoid. The latest in diagnosis, prognosis, and therapy. Arch Dermatol 1998; 134: 1137–41.Google ScholarPubMed
Lehman, JS, Carnilleri, MJ. Diagnostic utility of direct immunofluorescence findings around hair follicles and sweat glands in immunobullous disease. J Cutan Pathol 2013; 40: 230–5.CrossRefGoogle ScholarPubMed
Ingen-Housz-Oro, S, Plee, J, Belmondo, T, et al. Positive direct immunofluorescence is of better value than ELISA-BP180 and ELISA-BP230 values for the prediction of relapse after treatment cessation in bullous pemphigoid: a retrospective study of 97 patients. Dermatology 2015; 231: 50–5.CrossRefGoogle ScholarPubMed
Magro, CM, Dyrsen, ME. The use of C3d and C4d immunohistochemistry on formalin-fixed tissue as a diagnostic adjunct in the assessment of inflammatory skin disease. J Am Acad Dermatol 2008; 59: 822–33.CrossRefGoogle ScholarPubMed
Kwon, EJ, Ntiamoah, P, Shulman, KJ. The utility of C4d immunohistochemistry on formalin-fixed paraffin-embedded tissue in the distinction of polymorphic eruption of pregnancy from pemphigoid gestationis. Am J Dermatopathol 2013; 35: 787–91.CrossRefGoogle ScholarPubMed
Glauser, S, Rutz, M, Cazzaniga, S, Hegyi, I, Borradori, L, Beltraminelli, H. Diagnostic value of immunohistochemistry on formalin-fixed paraffin-embedded skin biopsy specimens for bullous pemphigoid. Br J Dermatol 2016; 175: 988–93.CrossRefGoogle ScholarPubMed
Kamyab, K, Abdolreza, M, Ghanadan, A, et al. C4d immunohistochemical stain of formalin-fixed paraffin-embedded tissue as a sensitive method in the diagnosis of bullous pemphigoid. J Cutan Pathol 2019; 46: 723–8.CrossRefGoogle ScholarPubMed
Thakur, N, Chatterjee, D, Dev, A, et al. Utility of C3d and C4d immunohistochemical staining in formalin-fixed skin or mucosal biopsy specimens in diagnosis of bullous pemphigoid and mucous membrane pemphigoid. Sci Rep 2023; 13: 11283. doi: 10.1038/s41598-023-38193-8.CrossRefGoogle ScholarPubMed
Carey, B, Setterfield, J. Mucous membrane pemphigoid and oral blistering diseases. Clin Exp Dermatol 2019; 44: 732–9.CrossRefGoogle ScholarPubMed
Schmidt, E, Zillikens, D. Pemphigoid diseases. Lancet 2013; 381: 320–32.CrossRefGoogle ScholarPubMed
Boch, K, Ludwig, RJ, Zillikens, D, Schmidt, E. Penile mucous membrane pemphigoid. J Dtsch Dermatol Ges 2020; 18: 727–9.CrossRefGoogle ScholarPubMed
Daito, J, Katoh, N, Asai, J, et al. Brunsting-Perry cicatricial pemphigoid associated with autoantibodies to the C-terminal domain of BP180. Br J Dermatol 2008; 159: 984–6.CrossRefGoogle Scholar
Fässler, M, Rammlmair, A, Feldmeyer, L, et al. Mucous membrane pemphigoid and lichenoid reactions after immune checkpoint inhibitors: common pathomechanisms. J Eur Acad Dermatol Venereol 2020; 34: e112e115. doi: 10.1111/jdv.16036.CrossRefGoogle ScholarPubMed
Rahid, H, Lamberts, A, Borradori, L, et al. European guidelines (S3) on diagnosis and management of mucous membrane pemphigoid, initiated by the European Academy of Dermatology and Venereology – Part I. J Eur Acad Dermatol Venereol 2021; 35: 1750–64.Google Scholar
Egan, CA, Lazarova, Z, Darling, TN, et al. Anti-epiligrin cicatricial pemphigoid and relative risk for cancer. Lancet 2001; 357: 1850–1.CrossRefGoogle ScholarPubMed
Setterfield, J, Shirlaw, PJ, Kerr-Muir, M, et al. Mucous membrane pemphigoid: a dual circulating antibody response with IgG and IgA signified a more severe and persistent disease. Br J Dermatol 1998; 138: 602–10.CrossRefGoogle ScholarPubMed
Rahbar, Z, Cohen, JN, McCalmont, TH, et al. Cicatricial pemphigoid Brunsting-Perry variant masquerading as neutrophil-mediated cicatricial alopecia. J Cutan Pathol 2022; 49: 408–11.CrossRefGoogle ScholarPubMed
Mehra, T, Guenova, E, Dechent, F, et al. Diagnostic relevance of direct immunofluorescence in ocular mucous membrane pemphigoid. J Dtsch Dermatol Ges 2015; 13: 1268–74.CrossRefGoogle ScholarPubMed
Yilmaz, K, Hammers, CM, Boch, K, Zillikens, D, Shimanovich, I, Schmidt, E. Immunoglobulin M mucous membrane pemphigoid. J Dtsch Dermatol Ges 2023; 21: 285–7.CrossRefGoogle ScholarPubMed
Lipozencic, J, Ljubojevic, S, Bukvic-Mokos, Z. Pemphigoid gestationis. Clin Dermatol 2012; 30: 51–5.CrossRefGoogle ScholarPubMed
Preuß, SL, Vorobyev, A, Moderegger, EL, et al. Pemphigoid gestationis is associated with an increased risk for adverse pregnancy outcomes: a large-scale propensity-matched retrospective cohort study. J Am Acad Dermatol 2024; 91:748–750.CrossRefGoogle ScholarPubMed
Jimenez, A, Blain, K, Khalighi, M, Clarke, JT, Snook, J, Cipriano, SD. Neonatal pemphigoid gestationis: an atypical presentation of a rare disease. Pediatr Dermatol 2021; 38: 1575–6.CrossRefGoogle ScholarPubMed
Cordel, N, Flament, J, Jouen, F, et al; French study Group on autoimmune bullous skin diseases. Anti-BP180 IgG antibody ELISA values correlate with adverse pregnancy outcomes in pemphigoid gestationis. J Eur Acad Dermatol Venereol 2023; 37: 1207–14.CrossRefGoogle ScholarPubMed
Castro, LA, Lundell, RB, Krause, PK, Gibson, LE. Clinical experience in pemphigoid gestationis: report of 10 cases. J Am Acad Dermatol 2006; 55: 823–8.CrossRefGoogle ScholarPubMed
Baban, F, Xie, F, Lehman, JS, Theiler, R, Todd, A, Davis, DM, Johnson, EF. Histopathological features of pemphigoid gestationis and polymorphic eruption of pregnancy: A blinded retrospective comparative study of 31 cases. J Cutan Pathol 2023; 50: 358–63.CrossRefGoogle ScholarPubMed
Tani, N, Kimura, Y, Koga, H, et al. Clinical and immunological profiles of 25 patients with pemphigoid gestationis. Br J Dermatol 2015; 172: 120–9.CrossRefGoogle ScholarPubMed
Barnadas, MA, Rubiales, V, Gonzalez, MJ, et al. Enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence testing in a bullous pemphigoid and pemphigoid gestationis. Int J Dermatol 2008; 47: 1245–9.CrossRefGoogle Scholar
Dilling, A, Rose, C, Hashimoto, T, Zillikens, D, Shimanovich, I. Anti-p200 pemphigoid: a novel autoimmune subepidermal blistering disease. J Dermatol 2007; 34: 18.CrossRefGoogle ScholarPubMed
Dainichi, T, Kurono, S, Ohyama, B, et al. Anti-laminin gamma-1 pemphigoid. Proc Natl Acad Sci USA 2009; 106: 2800–5.CrossRefGoogle ScholarPubMed
Goletz, S, Pigors, M, Lari, TR, et al. Laminin beta4 is a constituent of the cutaneous basement membrane zone and additional autoantigen of anti-p200 pemphigoid. J Am Acad Dermatol 2024; 90: 790–7.CrossRefGoogle ScholarPubMed
Gao, Y, Qian, H, Hashimoto, T, Li, X. Potential contribution of anti-p200 autoantibodies to mucosal lesions in anti-p200 pemphigoid. Front Immunol 2023; 14: 1118846. doi: 10.3389/fimmu.2023.1118846.CrossRefGoogle ScholarPubMed
Holtsche, MM, Goletz, S, von Georg, A, et al. Serologic characterization of anti-p200 pemphigoid: epitope spreading as a common phenomenon. J Am Acad Dermatol 2021; 84: 1155–7.CrossRefGoogle ScholarPubMed
Wang, Y, Li, S, Li, Z, et al. Clinical and immunoserological characteristics of anti-p200 pemphigoid: Comparisons of patients with epitope spreading and non-epitope spreading. Int J Dermatol 2025; 64:359–366.CrossRefGoogle Scholar
Goetze, S, Dumke, AK, Zillikens, D, Hipler, UC, Elsner, P. Anti-p200/laminin gamma1 pemphigoid associated with metastatic oesophageal cancer. J Eur Acad Dermatol Venereol 2017; 31: e219e221.CrossRefGoogle ScholarPubMed
Laufer Britva, R, Amber, KT, Cohen, AD, Kridin, K. Treatment and clinical outcomes in anti-p200 pemphigoid: a systematic review. J Eur Acad Dermatol Venereol 2020; 34: 465–72.CrossRefGoogle ScholarPubMed
Rose, C, Weyers, W, Denisjuk, N, et al. Histopathology of anti-p200 pemphigoid. Am J Dermatopathol 2007; 29: 119–24.CrossRefGoogle ScholarPubMed
Senatore, S, Maglie, R, Montefusco, F, et al. Inverted-U serration pattern: a novel clue for the diagnosis of anti-laminin-gamma1 pemphigoid. Int J Dermatol 2021; 60: 1547–9.CrossRefGoogle ScholarPubMed
Lau, I, Goletz, S, Holtsche, MM, Zillikens, D, Fechner, K, Schmidt, E. Anti-p200 pemphigoid is the most common pemphigoid disease with serum antibodies against the dermal side by indirect immunofluorescence microscopy on human salt-split skin. J Am Acad Dermatol 2019; 81: 1195–7.CrossRefGoogle Scholar
Groth, S, Recke, A, Vafia, K, et al. Development of a simple enzyme-linked immunosorbent assay for the detection of autoantibodies in anti-p200 pemphigoid. Br J Dermatol 2011; 164: 7682.CrossRefGoogle ScholarPubMed
Kitayama, S, Makino, T, Hayashi, M, et al. Usefulness of immunofluorescence overlay antigen mapping in the identification of autoantigen in anti-p200 pemphigoid. J Dermatol 2023; 50: 1194–8.CrossRefGoogle ScholarPubMed
Hubner, F, Langan, EA, Recke, A. Lichen planus pemphigoides: from lichenoid inflammation to autoantibody-mediated blistering. Front Immunol 2019; 10: 1389. https://doi.org/10.3389/fimmu.2019.01389CrossRefGoogle ScholarPubMed
Wang, S, Sun, J, Deng, S, et al. Lichen planus pemphigoides induced by anti-PD-1 antibody: a case only involved in oral mucosa with excellent topical treatment efficiency. J Cutan Pathol 2024; 51: 114–18.CrossRefGoogle ScholarPubMed
Zaraa, I, Mahfoudh, A, Sellami, MK, et al. Lichen planus pemphigoides: four new cases and a review of the literature. Int J Dermatol 2013; 52: 406–12.CrossRefGoogle Scholar
Solomon, LW, Helm, TN, Stevens, C, et al. Clinical and immunopathologic findings in oral lichen planus pemphigoides. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 103: 808–13.CrossRefGoogle ScholarPubMed
Mansfield, PK, Moody, R, Li, Y, Heinecke, G. A rare case of lichen planus pemphigoides with palmoplantar hyperkeratotic plaques. JAAD Case Rep 2024; 49: 1416. doi: 10.1016/j.jdcr.2024.04.001.CrossRefGoogle ScholarPubMed
Zillikens, D, Caux, F, Mascaro, JM, et al. Autoantibodies in lichen planus pemphigoides react with a novel epitope within the C-terminal NC16A domain of BP180. J Invest Dermatol 1999; 113: 117–21.Google ScholarPubMed
Okochi, H, Nashiro, K, Tsuchida, T, Seki, Y, Tamaki, K. Lichen planus pemphigoides: case report and results of immunofluorescence and immunoelectron microscopic study. J Am Acad Dermatol 1990; 22: 626–31.CrossRefGoogle ScholarPubMed
Jang, SH, Yun, SJ, Lee, SC, Lee, JB. Lichen planus pemphigoides associated with chronic hepatitis B virus infection. Clin Exp Dermatol 2015; 40: 868–71.CrossRefGoogle ScholarPubMed
Chorzelski, TP, Jablonska, S. IgA linear dermatosis of childhood (chronic bullous disease of childhood). Br J Dermatol 1979; 101: 535–42.CrossRefGoogle ScholarPubMed
Gottlieb, J, Ingen-Housz-Oro, S, Alexandre, M, et al. Idiopathic linear IgA bullous dermatosis: prognostic factors based on a case series of 72 adults. Br J Dermatol 2017; 177: 212–22.CrossRefGoogle ScholarPubMed
Garel, B, Ingen-Housz-Oro, S, et al. Drug-induced linear immunoglobulin A bullous dermatosis: a French retrospective pharmacovigilance study of 69 cases. Br J Clin Pharmacol 2019; 85: 570–9.CrossRefGoogle ScholarPubMed
Ishiko, A, Shimizu, H, Masunaga, T, et al. 97-kDa linear IgA bullous dermatosis angigen localizes in the lamina lucida between the NC16A and carboxyl terminal domain of the 180 kDa bullous permphigoid antigen. J Invest Dermatol 1998; 111: 93–6.CrossRefGoogle Scholar
Caux, F, Patsatsi, A, Karakioulaki, M, et al. S2 k guidelines on diagnosis and treatment of linear IgA dermatosis initiated by the European Academy of Dermatology and Venereology. J Eur Acad Dermatol Venereol 2024; 38: 1006–23.CrossRefGoogle Scholar
Becker, M, Schumacher, N, Schmidt, E, Zillikens, D, Sadik, CD. Evaluation and comparison of clinical and laboratory characteristics of patients with IgA epidermolysis Bullosa Acquisita, Linear IgA Bullous Dermatosis, and IgG Epidermolysis Bullosa Acquisita. JAMA Dermatol. 2021; 157: 917–23.CrossRefGoogle ScholarPubMed
Wang, KL, Todd, A, Davis, DMR, Lehman, JS. Histopathologic features in drug-induced, malignancy-associated, or idiopathic linear IgA bullous dermatosis: a retrospective comparative cohort study of 65 patients. J Cutan Pathol 2025; 52:254–258.CrossRefGoogle Scholar
Egan, CA, Taylor, TB, Meyer, LJ, Petersen, MJ, Zone, JJ. The immunoglobulin A antibody response in clinical subsets of mucous membrane pemphigoid. Dermatology 1999; 198: 330–5.CrossRefGoogle ScholarPubMed
Vodegel, RM, Jonkman, MF, Pas, HH, de Jong, MC. U-serrated immunodeposition pattern differentiates type VII collagen targeting bullous diseases from other subepidermal bullous autoimmune diseases. Br J Dermatol 2004; 151: 112–18.CrossRefGoogle ScholarPubMed
Ohata, C, Ishii, N, Koga, H, Nakama, T. A clinical and serological study of linear IgA bullous dermatosis without linear immunoglobulin deposition other than IgA at the basement membrane zone using direct immunofluorescence. Br J Dermatol 2017; 177: 152–7.CrossRefGoogle ScholarPubMed
Willsteed, E, Bhogal, BS, Black, MM, McKee, P, Wojnarowska, F. Use of 1 M NaCl split skin in the direct immunofluorescence of the linear IgA bullous dermatoses. J Cutan Pathol 1990; 17: 144–8.CrossRefGoogle Scholar
El-Domyati, M, Abdel-Wahab, H, Ahmad, H. Immunohistochemical localization of basement membrane laminin 5 and collagen IV in adult linear IgA disease. Int J Dermatol 2015; 54: 922–8.CrossRefGoogle ScholarPubMed
Kridin, K, Kneiber, D, Kowalski, EH, Valdebran, M, Amber, KT. Epidermolysis bullosa acquisita: a comprehensive review. Autoimmun Rev 2019; 18: 786–95.CrossRefGoogle ScholarPubMed
Hignett, E, Sami, N. Pediatric epidermolysis bullosa acquisita: a review. Pediatr Dermatol 2021; 38: 1047–50.CrossRefGoogle ScholarPubMed
Hundorfean, G, Neurath, MF, Sitaru, C. Autoimmunity against type VII collagen in inflammatory bowel disease. J Cell Mol Med 2010; 14: 2393–403.CrossRefGoogle ScholarPubMed
Miyamoto, D, Gordilho, JO, Santi, CG, Porro, AM. Epidermolysis bullosa acquisita. An Bras Dermatol 2022; 97: 409–23.CrossRefGoogle ScholarPubMed
Meijer, JM, Atefi, I, Diercks, GFH, et al. Serration pattern analysis for differentiating epidermolysis bullosa acquisita from other pemphigoid diseases. J Am Acad Dermatol 2018; 78: 754–59.e6. doi: 10.1016/j.jaad.2017.11.029.CrossRefGoogle ScholarPubMed
Seta, V, Aucouturier, F, Bonnefoy, J, et al. Comparison of 3 type VII collagen (C7) assays for serologic diagnosis of epidermolysis bullosa acquisita (EBA). J Am Acad Dermatol 2016; 74: 1166–72.CrossRefGoogle ScholarPubMed
Burnham, TK, Neblett, TR, Fine, G. Immunofluorescent “band” test for lupus erythematosus. II. Employing skin lesions. Arch Dermatol 1970; 102: 4250.CrossRefGoogle ScholarPubMed
Cardinali, C, Caproni, M, Fabbri, P. The utility of the lupus band test on sun-protected non-lesional skin for the diagnosis of systemic lupus erythematosus. Clin Exp Rheumatol 1999; 17: 427–32.Google ScholarPubMed
Leibold, AM, Bennion, S, David-Bajar, K, Schleve, MJ. Occurrence of positive immunofluorescence in the dermo-epidermal junction of sun-exposed skin of normal adults. J Cutan Pathol 1994; 21: 200–6.CrossRefGoogle ScholarPubMed
de Risi-Pugliese, T, Cohen Aubart, F, Haroche, J, et al. Clinical, histological, immunological presentations and outcomes of bullous systemic lupus erythematosus: 10 new cases and a literature review of 118 cases. Semin Arthritis Rheum 2018; 48: 83–9.CrossRefGoogle Scholar
Barker, CS, Bruner, E, Self, S, Elston, DM. U-serrated and n-serrated patterns in bullous pemphigoid, epidermolysis bullosa acquisita, and bullous lupus: a retrospective observational study. J Am Acad Dermatol 2024; 90: 1282–4.CrossRefGoogle ScholarPubMed
Kontos, AP, Jirsari, M, Jacobsen, G, et al. Immunoglobulin M predominance in cutaneous lupus erythematosus. J Cutan Pathol 2005; 32: 352–5.CrossRefGoogle ScholarPubMed
Magro, CM, Crowson, AN. The immunofluorescent profile of dermatomyositis: a comparative study with lupus erythematosus. J Cutan Pathol 1997; 24: 543–52.CrossRefGoogle ScholarPubMed
Magro, CM, Crowson, AN, Regauer, S. Mixed connective tissue disease: a clinical, histologic, and immunofluorescence study of eight cases. Am J Dermatopathol 1997; 19: 206–13.CrossRefGoogle ScholarPubMed
Jones, SA, Black, MM. The value of direct immunofluorescence as a diagnostic aid in dermatomyositis: a study of 35 cases. Clin Exp Dermatol 1997; 22: 7781.CrossRefGoogle ScholarPubMed
Magro, CM, Crowson, AN, Harrist, TJ. The use of antibody to C5b-9 in the subclassification of lupus erythematosus. Br J Dermatol 1996; 134: 855–62.CrossRefGoogle ScholarPubMed
Kakoullis, L, Louppides, S, Papachristodoulou, E, Panos, G. Porphyrias and photosensitivity: pathophysiology for the clinician. Postgrad Med 2018; 130: 673–86.CrossRefGoogle ScholarPubMed
110. Green, JJ, Manders, SM. Pseudoporphyria. J Am Acad Dermatol 2001; 44: 100–8.CrossRefGoogle ScholarPubMed
Maynard, B, Peters, MS. Histologic and immunofluorescence study of cutaneous porphyrias: histologic and immunofluorescence study of cutaneous porphyrias. J Cutan Pathol 1992; 19: 40–7.CrossRefGoogle ScholarPubMed
Dabski, C, Beutner, EH. Studies of laminin and type IV collagen in blisters of porphyria cutanea tarda and drug-induced pseudoporphyria. J Am Acad Dermatol 1991; 25: 2832.CrossRefGoogle ScholarPubMed
Nguyen, CN, Kim, SJ. Dermatitis herpetiformis: an update on diagnosis, disease monitoring, and management. Medicina 2021; 57: 843. doi: 10.3390/medicina57080843.CrossRefGoogle ScholarPubMed
Mobacken, H, Kastrup, W, Nilsson, LA. Incidence and prevalence of dermatitis herpetiformis in western Sweden. Acta Derm Venereol 1984; 64: 400–4.CrossRefGoogle ScholarPubMed
Verdelli, A, Corrà, A, Mariotti, EB, et al. Skin gluten-related disorders: new and old cutaneous manifestations to be considered. Front Med 2023; May 17; 10: 1155288. doi: 10.3389/fmed.2023.1155288.CrossRefGoogle ScholarPubMed
Sardy, M, Karpati, S, Merkl, B, Paulsson, M, Smyth, N. Epidermal transglutaminase (Tgase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 2002; 195: 747–57.CrossRefGoogle Scholar
Barnadas, MA. Dermatitis herpetiformis: a review of direct immunofluorescence findings. Am J Dermatopathol 2016; 38: 283–8.CrossRefGoogle ScholarPubMed
Drozdowski, R, Stewart, C, Murphy, M. Fibrillary “fern-like” immunoglobulin A deposition in dermatitis herpetiformis. Am J Dermatopathol 2022; 44: 389–90.CrossRefGoogle ScholarPubMed
Antiga, E, Maglie, R, Lami, G, et al. Granular deposits of IgA in the skin of coeliac patients without dermatitis herpetiformis: a prospective multicentric analysis. Acta Derm Venereol. 2021; 101: adv00382. doi: 10.2340/00015555-3742.CrossRefGoogle ScholarPubMed
Hashimoto, T, Tsuruta, D, Yasukochi, A, et al. Granular C3 dermatosis. Acta Derm Venereol 2016; 96: 748–53.Google ScholarPubMed
Fine, JD, Bruckner-Tuderman, L, Eady, RAJ, et al. Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J Am Acad Dermatol 2014; 70: 1103–26.CrossRefGoogle ScholarPubMed
Bardhan, A, Bruckner-Tuderman, L, et al. Epidermolysis bullosa. Nat Rev Dis Primers 2020; 6: 78. doi: 10.1038/s41572-020-0210-0.CrossRefGoogle ScholarPubMed
Carmona-Cruz, SA, Durán-McKinster, LC, García-Romero, MT. Atypical purpura and other features associated with unfavorable outcomes of IgA vasculitis (Henoch–Schonlein purpura) in children: a retrospective study. Pediatr Dermatol 2022; 39: 369–71.CrossRefGoogle ScholarPubMed
Hammad, H, Krausz, J, Barcan, M, Fisher, S, Edison, N, Ziv, M. Adult Henoch–Schönlein purpura: comprehensive assessment of demographic, clinical, and histopathological features as predictors for systemic involvement. Dermatology 2023; 239: 609–15.CrossRefGoogle ScholarPubMed
Magro, CM, Crowson, AN. A clinical and histologic study of 37 cases of immunoglobulin A associated vasculitis. Am J Dermatopathol 1999; 21: 234–40.CrossRefGoogle ScholarPubMed
Hirt, PA, Nanda, S, Ogunbufunmi, F, Dorizas, A, Maderal, A. Increased systemic symptoms in patients with positive direct immunofluorescence of skin biopsies with Henoch–Schonlein purpura/IgA vasculitis: a retrospective chart review. Am J Dermatopathol 2023; 45: 861–2.CrossRefGoogle ScholarPubMed
Gambichler, T, Bui, D, Domin, B, et al. Comparison of clinical and laboratory data of adult patients with cutaneous IgA vasculitis and non-IgA vasculitis. Clin Exp Dermatol 2024; 49: 859–65.CrossRefGoogle ScholarPubMed
Ramdani, Y, Bettuzzi, T, Bouznad, A, et al. IgA vasculitis following COVID-19 vaccination: a French multicenter case series including 12 patients. J Rheumatol 2023; 50: 252–7.CrossRefGoogle ScholarPubMed
Barnadas, MA, Perez, E, Gich, I, et al. Diagnostic, prognostic and pathogenic value of the direct immunofluorescence test in cutaneous leukocytoclastic vasculitis. Int J Dermatol 2004; 43: 1926.CrossRefGoogle ScholarPubMed
Linskey, KR, Kroshinsky, D, Mihm, MC Jr, Hoang, MP. Immunoglobulin A-associated small-vessel vasculitis: a 10-year experience at the Massachusetts General Hospital. J Am Acad Dermatol 2012; 66: 813–22.CrossRefGoogle ScholarPubMed
Poterrucha, TJ, Wetter, DA, Gibson, LE, Camilleri, MJ, Lohse, CM. Correlates of systemic disease in adult Henoch–Schonlein purpura: a retrospective study of direct immunofluorescence and skin lesion distribution in 87 patients at Mayo Clinic. J Am Acad Dermatol 2012; 67: 612–16.CrossRefGoogle Scholar
Thompson, AJ, Chan, YL, Woodroffe, AJ, et al. Vascular IgA deposits in clinically normal skin of patients with renal disease. Pathology 1980; 12: 407–13.CrossRefGoogle ScholarPubMed
Saklayen, MG, Schroeter, AL, Nafz, MA, Jalik, K. IgA deposition in the skin of patients with alcoholic liver disease. J Cutan Pathol 1996; 23: 1218.CrossRefGoogle ScholarPubMed
Schepens, I, Jaunin, F, Begre, N, et al. The protease inhibitor alpha-2-macroglobulin-like-1 is the p170 antigen recognized by paraneoplastic pemphigus autoantibodies in human. PLoS One 2010; 5: e12250.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Immunobullous Disorders
  • Edited by Mai P. Hoang, Harvard Medical School, Boston
  • Book: Immunohistochemistry and Ancillary Studies in Diagnostic Dermatopathology
  • Online publication: 17 June 2025
  • Chapter DOI: https://doi.org/10.1017/9781009549240.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Immunobullous Disorders
  • Edited by Mai P. Hoang, Harvard Medical School, Boston
  • Book: Immunohistochemistry and Ancillary Studies in Diagnostic Dermatopathology
  • Online publication: 17 June 2025
  • Chapter DOI: https://doi.org/10.1017/9781009549240.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Immunobullous Disorders
  • Edited by Mai P. Hoang, Harvard Medical School, Boston
  • Book: Immunohistochemistry and Ancillary Studies in Diagnostic Dermatopathology
  • Online publication: 17 June 2025
  • Chapter DOI: https://doi.org/10.1017/9781009549240.012
Available formats
×