Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-f9nfp Total loading time: 0 Render date: 2025-06-18T20:37:27.382Z Has data issue: false hasContentIssue false

Chapter 5 - Inflammatory Dermatoses Mimicking Lymphomas

Published online by Cambridge University Press:  17 June 2025

Mai P. Hoang
Affiliation:
Harvard Medical School, Boston
Get access

Summary

Pseudolymphomas can be comprised of a prominent infiltrate of B cells, T cells, and even plasma cells. In these settings, they can mimic a lymphoproliferative process and immunohistochemistry plays an important role in excluding cutaneous lymphoma. B-cell pseudolymphomas or cutaneous lymphoid hyperplasia can mimic cutaneous follicle center cell lymphoma and primary cutaneous marginal zone B-cell lymphoma histopathologically. T-cell pseudolymphomas include a variety of inflammatory dermatoses that exhibit epidermotropism and can mimic a T-cell lymphoproliferative disorders such as mycosis fungoides. Some examples include lymphomatoid contact dermatitis, lymphomatoid drug eruption, follicular mucinosis, lupus erythematosus panniculitis, pigmented purpuric dermatosis, pityriasis lichenoides chronica/pityriasis lichenoides et varioliformis acuta, and pseudolymphomatous folliculitis. In some instances, the infiltrate is rich in plasma cells as in IgG4-related disease in the skin. Ultimately clinical pathologic correlation and sometimes the use of molecular studies will allow the classification of these entities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Nestle, FO, Di Meglio, P, Qin, JZ et al. Skin immune sentinels in health and disease. Nat Rev Immunol 2009; 9: 679–91.CrossRefGoogle ScholarPubMed
Heath, WR, Carbone, FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 2013; 14: 978–85.CrossRefGoogle ScholarPubMed
Nihal, M, Mikkola, D, Horvath, N, et al. Cutaneous lymphoid hyperplasia: a lymphoproliferative continuum with lymphomatous potential. Hum Pathol 2003; 34: 617–22.CrossRefGoogle ScholarPubMed
Colli, C, Leinweber, B, Müllegger, R, et al. Borrelia burgdorferi-associated lymphocytoma cutis: clinicopathologic, immunophenotypic, and molecular study of 106 cases. J Cutan Pathol 2004; 31: 232–40.CrossRefGoogle ScholarPubMed
Miguel, D, Peckruhn, M, Elsner, P. Treatment of cutaneous pseudolymphoma: a systematic review. Acta Derm Venereol. 2018; 98: 310–17.CrossRefGoogle ScholarPubMed
Mitteldorf, C, Kempf, W. Cutaneous pseudolymphoma—a review on the spectrum and a proposal for a new classification. J Cutan Pathol 2020; 47: 7697.CrossRefGoogle Scholar
Ploysangam, T, Breneman, DL, Mutasim, DF. Cutaneous pseudolymphomas. J Am Acad Dermatol 1998; 38: 877–98.CrossRefGoogle ScholarPubMed
WHO Classification of Tumours Editorial Board. Skin Tumours [Internet; beta version ahead of print] (WHO classification of tumours series). 5th ed. Vol. 12. Lyon (France): International Agency for Research on Cancer; 2023.Google Scholar
Murphy, M, Fullen, D, Carlson, JA. Low CD7 expression in benign and malignant cutaneous lymphocytic infiltrates experience with an antibody reactive with paraffin-embedded tissue. Am J Dermatopathol 2002; 24: 616.CrossRefGoogle ScholarPubMed
Ponti, R, Quaglino, P, Novelli, M, et al. T-cell receptor γ gene rearrangement by multiplex polymerase chain reaction/heteroduplex analysis in patients with cutaneous T-cell lymphoma (mycosis fungoides/Sézary syndrome) and benign inflammatory disease: correlation with clinical, histological and immunophenotypical findings. Br J Dermatol 2005; 153: 565–73.CrossRefGoogle ScholarPubMed
Erős, N, Károlyi, Z, Marschalkó, M, et al. Clinical, histopathological, immunophenotypic and molecular analysis of 60 patients with cutaneous T-cell infiltrates with follow up of indeterminate cases to identify T-cell lymphoma. Path Oncol Res 2008; 14: 63–7.CrossRefGoogle ScholarPubMed
Mitteldorf, C, Kempf, W. Cutaneous pseudolymphoma. Surg Pathol Clin. 2017; 10: 455–76.CrossRefGoogle ScholarPubMed
Bergman, R, Khamaysi, K, Khamaysi, Z, et al. A study of histologic and immunophenotypical staining patterns in cutaneous lymphoid hyperplasia. J Am Acad Dermatol 2011; 65: 112–24.CrossRefGoogle ScholarPubMed
Arai, E, Shimizu, M, Hirose, T. A review of 55 cases of cutaneous lymphoid hyperplasia: Reassessment of the histopathologic findings leading to reclassification of 4 lesions as cutaneous marginal zone lymphoma and 19 as pseudolymphomatous folliculitis. Hum Pathol 2005; 36: 505–11.CrossRefGoogle Scholar
De Leval, L, Harris, NL, Longtine, J, Ferry, JA, Duncan, LM. Cutaneous B-cell lymphomas of follicular and marginal zone types use of Bcl-6, CD10, Bcl-2, and CD21 in differential diagnosis and classification. Am J Surg Pathol 2001; 25: 732–41.CrossRefGoogle ScholarPubMed
Goodlad, JR, Krajewski, AS, Batstone, PJ, et al. Primary cutaneous follicular lymphoma: A clinicopathologic and molecular study of 16 cases in support of a distinct entity. Am J Surg Pathol 2002; 26: 733–41.CrossRefGoogle ScholarPubMed
Cerroni, L, Arzberger, E, Pü Tz, B et al. Primary cutaneous follicle center cell lymphoma with follicular growth pattern. Blood 2000; 95: 3922–8.CrossRefGoogle ScholarPubMed
Servitje, O, Gallardo, F, Estrach, T, et al. Primary cutaneous marginal zone B-cell lymphoma: a clinical, histopathological, immunophenotypic and molecular genetic study of 22 cases. Br J Dermatol 2002; 147: 1147–58.CrossRefGoogle ScholarPubMed
LeBoit, PE, McNutt, NS, Reed, JA, Jacobson, M, Weiss, LM. Primary cutaneous immunocytoma: a B-cell lymphoma that can easily be mistaken for cutaneous lymphoid hyperplasia. Am J Surg Pathol 1994; 18: 969–78.CrossRefGoogle ScholarPubMed
Wood, GS, Kamath, N V., Guitart, J, et al. Absence of Borrelia burgdorferi DNA in cutaneous B-cell lymphomas from the United States. J Cutan Pathol 2001; 28: 502–7.CrossRefGoogle ScholarPubMed
Cho, WC, Gill, P, Nagarajan, P, et al. Cutaneous lymphoid hyperplasia with T-cell clonality and monotypic plasma cells secondary to a tick bite: a hidden critter and the power of deeper levels. Am J Dermatopathol 2021; 44: 226–9.Google Scholar
Moreno, A, Curco, N, Serrano, T, Garcia, J, Llistosella, E, Bordas, X. Disseminated, miliarial type lymphocytoma cutis. Acta Derm Venerol 1991; 71: 334–6.CrossRefGoogle ScholarPubMed
Villalobos-Ayala, RA, Espinoza-Gurrola, AA, Guevara-Gutiérrez, E, et al. Lymphocytoma cutis (cutaneous B-cell pseudolymphoma): study of 102 cases with emphasis on the histological characteristics and immunohistochemistry of the miliarial type. Int J Dermatol 2022; 61: 316–23.CrossRefGoogle ScholarPubMed
Moulonguet, I, Ghnassia, M, Molina, T, et al. Miliarial-type perifollicular B-cell pseudolymphoma (lymphocytoma cutis): a misleading eruption in two women. J Cutan Pathol 2012; 39: 1016–21.CrossRefGoogle Scholar
Knackstedt, TJ, Zug, KA. T cell lymphomatoid contact dermatitis: a challenging case and review of the literature. Contact Dermatitis. 2015; 72: 6574.CrossRefGoogle ScholarPubMed
Magro, CM, Daniels, BH, Crowson, AN. Drug induced pseudolymphoma. Semin Diagn Pathol 2018; 35: 247–59.CrossRefGoogle ScholarPubMed
Gómez Orbaneja, J, Iglesias Diez, L, Sánchez Lozano, JL, et al. Lymphomatoid contact dermatitis A syndrome produced by epicutaneous hypersensitivity with clinical features and a histopathologic picture similar to that of mycosis fungoides. Contact Dermatitis 1976; 2: 139–43.CrossRefGoogle Scholar
Smolle, J, Torne, R, Soyer, HP, et al. Immunohistochemical classification of cutaneous pseudolymphomas: delineation of distinct patterns. J Cutan Pathol 1990; 17: 149–59.CrossRefGoogle ScholarPubMed
Haynes, BF, Hensley, LL, Jegasothy, B V. Phenotypic characterization of skin-infiltrating T cells in cutaneous T-cell lymphoma: comparison with benign cutaneous T-cell infiltrates. Blood 1982; 60: 463–73.CrossRefGoogle ScholarPubMed
Marliere, V, Beylot-Barry, M, Doutre, M-S, et al. Lymphomatoid contact dermatitis caused by isopropyl-diphenylenediamine: two cases. J Allergy Clin Immunol 1998; 102: 152–3.CrossRefGoogle ScholarPubMed
Souteyrand, P, d’Incan, M. Drug induced mycosis fungoides like lesions. Curr Probl Dermatol 1990; 19: 176–82.Google ScholarPubMed
Magro, CM, Crowson, AN. Drug-induced immune dysregulation as a cause of atypical cutaneous lymphoid infiltrates: a hypothesis. Hum Pathol 1996; 27: 125–32.CrossRefGoogle ScholarPubMed
Pulitzer, MP, Nolan, KA, Oshman, RG, Phelps, RG. CD30+ lymphomatoid drug reactions. Am J Dermatopathol 2013; 35: 343–50.CrossRefGoogle ScholarPubMed
Brady, SP, Magro, CM, Diaz-Cano, SJ, Wolfe, HJ. Analysis of clonality of atypical cutaneous lymphoid infiltrates associated with drug therapy by PCR/DGGE. Hum Pathol 1999; 30: 130–6.CrossRefGoogle ScholarPubMed
Ortonne, N, Buyukbabani, N, Delfau-Larue, MH, et al. Value of the CD8-CD3 ratio for the diagnosis of mycosis fungoides. Mod Pathol 2003; 16: 857–62.CrossRefGoogle ScholarPubMed
Florell, SR, Cessna, M, Lundell, RB, et al. Usefulness (or lack thereof) of immunophenotyping in atypical cutaneous T-cell infiltrates. Am J Clin Pathol 2006; 125: 727–36.CrossRefGoogle ScholarPubMed
Cerroni, L, Fink-Puches, R, Bä Ck, B, Kerl, H. Follicular mucinosis: a critical reappraisal of clinicopathologic features and association with mycosis fungoides and Sézary syndrome. Arch Dermatol 2002; 138: 182–9.CrossRefGoogle ScholarPubMed
Gerami, P, Rosen, S, Kuzel, T, Boone, SL, Guitart, J. Folliculotropic mycosis fungoides: an aggressive variant of cutaneous T-cell lymphoma. Arch Dermatol 2008; 144: 738–46.CrossRefGoogle ScholarPubMed
Burg, G, Kempf, W, Cozzio, A, et al. WHO/EORTC classification of cutaneous lymphomas 2005: histological and molecular aspects. J Cutan Pathol 2005; 32: 647–74.CrossRefGoogle ScholarPubMed
Rongioletti, F, De Lucchi, S, Meyes, D, et al. Follicular mucinosis: a clinicopathologic, histochemical, immunohistochemical and molecular study comparing the primary benign form and the mycosis fungoides-associated follicular mucinosis. J Cutan Pathol 2010; 37: 1519.CrossRefGoogle ScholarPubMed
Demirkesen, C, Esirgen, G, Engin, B, et al. The clinical features and histopathologic patterns of folliculotropic mycosis fungoides in a series of 38 cases. J Cutan Pathol 2015; 42: 2231.CrossRefGoogle Scholar
van Doorn, R, Scheffer, E, Willemze, R. Follicular mycosis fungoides, a distinct disease entity with or without associated follicular mucinosis. Arch Dermatol 2002; 138: 191–8.CrossRefGoogle ScholarPubMed
Flaig, MJ, Cerroni, L, Schuhmann, K, et al. Follicular mycosis fungoides: a histopathologic analysis of nine cases. J Cutan Pathol 2001; 28: 525–30.CrossRefGoogle ScholarPubMed
Wang, J, Wang, Y, Zhou, H, et al. Clinicopathological features, therapeutic options, and significance of CD103 expression in 15 patients with follicular mucinosis. Front Med (Lausanne) 2023; 10. doi:10.3389/fmed.2023.1032072.Google ScholarPubMed
Brown, HA, Gibson, LE, Pujol, RM, et al. Primary follicular mucinosis: long-term follow-up of patients younger than 40 years with and without clonal T-cell receptor gene rearrangement. J Am Acad Dermatol 2002; 47: 856–62.CrossRefGoogle ScholarPubMed
Magro, CM, Schaefer, JT, Crowson, AN, et al. Pigmented purpuric dermatosis: classification by phenotypic and molecular profiles. Am J Clin Pathol 2007; 128: 218–29.CrossRefGoogle ScholarPubMed
Sun, J, Liu, K, Dang, J, Xiong, S, Pan, H, Wang, Y. Pigmented purpura dermatosis-like mycosis fungoides: four case reports and a review of published cases. Eur J Dermatol 2023; 33: 635–41.Google Scholar
Sidiropoulos, M, Deonizio, J, Estela Martinez-Escala, M, Gerami, P, Guitart, J. Chronic actinic dermatitis/actinic reticuloid: a clinicopathologic and immunohistochemical analysis of 37 cases. Am J Dermatopathol 2014; 36: 875–81.CrossRefGoogle ScholarPubMed
Baykal, C, Büyükbabani, N, Seçkin, D, et al. Cutaneous atypical papular CD8+ lymphoproliferative disorder at acral sites in a renal transplant patient. Clin Exp Dermatol 2017; 42: 902–5.CrossRefGoogle Scholar
Kempf, W, Petrella, T, Willemze, R, et al. Clinical, histopathological and prognostic features of primary cutaneous acral CD8+ T-cell lymphoma and other dermal CD8+ cutaneous lymphoproliferations: results of an EORTC Cutaneous Lymphoma Group workshop. Br J Dermatol 2022; 186: 887–97.CrossRefGoogle ScholarPubMed
Zhang, P, Chiriboga, L, Jacobson, M, et al. Mycosis fungoides like T-cell cutaneous lymphoid infiltrates in patients with HIV infection. Am J Dermatopathol 1995; 17: 2935.CrossRefGoogle Scholar
Guitart, J, Variakojis, D, Kuzel, T, et al. Cutaneous CD8+ T cell infiltrates in advanced HIV Infection. J Am Acad Dermatol 1999; 41: 722–7.CrossRefGoogle ScholarPubMed
Friedler, S, Parisi, MT, Waldo, E, et al. Atypical cutaneous lymphoproliferative disorder in patients with HIV infection. Int J Dermatol 1999; 38: 111–18.CrossRefGoogle ScholarPubMed
Bachelez, H, Hadida, F. Massive infiltration of the skin by HIV-specific cytotoxic CD8+ T cells. NEJM 1996; 335: 61–2.CrossRefGoogle ScholarPubMed
Gammon, B, Robson, A, Deonizio, J, et al. CD8+ granulomatous cutaneous T-cell lymphoma: a potential association with immunodeficiency. J Am Acad Dermatol 2014; 71: 555–60.CrossRefGoogle ScholarPubMed
Kempf, W, Mitteldorf, C, Cerroni, L, et al. Classifications of cutaneous lymphomas and lymphoproliferative disorders: an update from the EORTC cutaneous lymphoma histopathology group. J Eur Acad Dermatol Venerol 2024; 28: 14911503.CrossRefGoogle Scholar
Cetinozman, FC, Jansen, PM, Willemze, R. Expression of programmed death-1 in primary cutaneous CD4-positive small/medium-sized pleomorphic T-cell lymphoma, cutaneous pseudo-T-cell lymphoma, and other types of cutaneous T-cell lymphoma. Am J Surg Pathol 2012; 36: 109–16.CrossRefGoogle ScholarPubMed
McNutt, N. Cutaneous lymphohistiocytic infiltrates simulating malignant lymphoma. In: Murphy, G, Mihm, M, editors. Lymphoproliferative Disorders of the Skin. Boston, MA: Butterworths, 1986; 356385.Google Scholar
Arai, E, Okubo, H, Tsuchida, T, et al. Pseudolymphomatous folliculitis. Am J Surg Pathol 1999; 23: 1313–9.CrossRefGoogle ScholarPubMed
Kwon, EJ, Kristjansson, AK, Meyerson, HJ, et al. A case of recurrent pseudolymphomatous folliculitis: A mimic of cutaneous lymphoma. J Am Acad Dermatol 2009; 60: 9941000.CrossRefGoogle ScholarPubMed
Shojiguchi, N, Arai, E, Anan, T, et al. Distribution of CD1a-positive cells is not different between pseudolymphomatous folliculitis and primary cutaneous marginal zone lymphoma. J Dermatol 2021; 48: 464–9.CrossRefGoogle Scholar
Horikiri, M, Abe, N, Ueda, K. Multiple nodules on the left cheek represented pseudolymphomatous folliculitis. Clin Case Rep 2016; 4: 568–71.CrossRefGoogle ScholarPubMed
Kazakov, D V, Belousova, IE, Kacerovska, D, et al. Hyperplasia of hair follicles and other adnexal structures in cutaneous lymphoproliferative disorders: a study of 53 cases, including so-called pseudolymphomatous folliculitis and overt lymphomas. Am J Surg Pathol 2008; 32: 1468–78.CrossRefGoogle ScholarPubMed
Goyal, A, Moore, JB, Gimbel, D, et al. PD-1, S-100 and CD1a expression in pseudolymphomatous folliculitis, primary cutaneous marginal zone B-cell lymphoma (MALT lymphoma) and cutaneous lymphoid hyperplasia. J Cutan Pathol 2015; 42: 615.CrossRefGoogle ScholarPubMed
Kempf, W, Kazakov, D V., Baumgartner, HP, et al. Follicular lymphomatoid papulosis revisited: a study of 11 cases, with new histopathological findings. J Am Acad Dermatol 2013; 68: 809–16.CrossRefGoogle ScholarPubMed
Kempf, W. CD30+ lymphoproliferative disorders: histopathology, differential diagnosis, new variants, and simulators. J Cutan Pathol. 2006; 33: 5870.CrossRefGoogle ScholarPubMed
Werner, B, Massone, C, Kerl, H, et al. Large CD30-positive cells in benign, atypical lymphoid infiltrates of the skin. J Cutan Pathol 2008; 35: 1100–7.CrossRefGoogle ScholarPubMed
Magro, CM, Guo, R, Nguyen, GH, et al. Pityriasis lichenoides-like drug reaction: a clinical histopathologic study of 10 cases. Dermatol Online J 2017; 23: 13030/qt7xd8j71z.Google ScholarPubMed
Geller, L, Antonov, NK, Lauren, CT, Morel, KD, Garzon, MC. Pityriasis lichenoides in childhood: review of clinical presentation and treatment options. Pediatr Dermatol 2015; 32: 579–92.CrossRefGoogle ScholarPubMed
Bowers, S, Warshaw, EM. Pityriasis lichenoides and its subtypes. J Am Acad Dermatol. 2006; 55: 557–72.CrossRefGoogle ScholarPubMed
Magro, C, Crowson, AN, Kovatich, A, et al. Pityriasis lichenoides: a clonal T-cell lymphoproliferative disorder. Hum Pathol 2002; 33: 788–95.CrossRefGoogle ScholarPubMed
Kempf, W, Kazakov, D V, Palmedo, G, et al. Pityriasis lichenoides et varioliformis acuta with numerous CD30 + cells: a variant mimicking lymphomatoid papulosis and other cutaneous lymphomas: a clinicopathologic, immunohistochemical, and molecular biological study of 13 cases. Am J Surg Pathol 2012; 36: 1021–9.CrossRefGoogle Scholar
Martinez-Escala, ME, Sidiropoulos, M, Deonizio, J, et al. γδ T-cell-rich variants of pityriasis lichenoides and lymphomatoid papulosis: benign cutaneous disorders to be distinguished from aggressive cutaneous γδ T-cell lymphomas. Br J Dermatol 2015; 172: 372–9.CrossRefGoogle ScholarPubMed
Magro, CM, Crowson, AN, Kovatich, AJ, et al. Lupus profundus, indeterminate lymphocytic lobular panniculitis and subcutaneous T-cell lymphoma: a spectrum of subcuticular T-cell lymphoid dyscrasia. J Cutan Pathol 2001; 28: 235–47.CrossRefGoogle ScholarPubMed
Park, HS, Choi, JW, Kim, BK, Cho, KH. Lupus erythematosus panniculitis: clinicopathological, immunophenotypic, and molecular studies. Am J Dermatopathol 2010; 32: 2430.CrossRefGoogle ScholarPubMed
Massone, C, Kodama, K, Salmhofer, W, et al. Lupus erythematosus panniculitis (lupus profundus): clinical, histopathological, and molecular analysis of nine cases. J Cutan Pathol 2005; 32: 396404.CrossRefGoogle ScholarPubMed
Aguilera, P, Mascaró, JM, Martinez, A, et al. Cutaneous γ/δ T-cell lymphoma: a histopathologic mimicker of lupus erythematosus profundus (lupus panniculitis). J Am Acad Dermatol 2007; 56: 643–7.CrossRefGoogle ScholarPubMed
Leblanc, RE, Tavallaee, M, Kim, YH, Kim, J. Useful parameters for distinguishing subcutaneous panniculitis-like T-cell lymphoma from lupus erythematosus panniculitis. Am J Surg Pathol 2016; 40: 745–54.CrossRefGoogle ScholarPubMed
Chen, SJT, Tse, JY, Harms, PW, et al. Utility of CD123 immunohistochemistry in differentiating lupus erythematosus from cutaneous T cell lymphoma. Histopathology 2019; 74: 908–16.CrossRefGoogle ScholarPubMed
Willemze, R, Jaffe, ES, Nter Burg, G et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005; 105: 3768–85.CrossRefGoogle ScholarPubMed
Willemze, R, Jansen, PM, Cerroni, L, et al. Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood 2008; 111: 838–45.CrossRefGoogle Scholar
Magro, CM, Schaefer, JT, Morrison, C, et al. Atypical lymphocytic lobular panniculitis: a clonal subcutaneous T-cell dyscrasia. J Cutan Pathol 2008; 35: 947–54.CrossRefGoogle ScholarPubMed
Machan, S, Rodríguez, M, Alonso-Alonso, R, et al. Subcutaneous panniculitis-like T-cell lymphoma, lupus erythematosus profundus, and overlapping cases: molecular characterization through the study of 208 genes. Leuk Lymphoma 2021; 62: 2130–40.CrossRefGoogle Scholar
Massone, C, Chott, A, Metze, D, et al. Subcutaneous, blastic natural killer (NK), NK/T-cell, and other cytotoxic lymphomas of the skin: a morphologic, immunophenotypic, and molecular study of 50 patients. Am J Surg Pathol 2004; 28: 719–35.CrossRefGoogle ScholarPubMed
Hoque, SR, Child, FJ, Whittaker, SJ, et al. Subcutaneous panniculitis-like T-cell lymphoma: a clinicopathological, immunophenotypic and molecular analysis of six patients. Br J Dermatol 2003; 148: 516–25.CrossRefGoogle ScholarPubMed
Go, RS, Wester, SM. Immunophenotypic and molecular features, clinical outcomes, treatments, and prognostic factors associated with subcutaneous panniculitis-like T-cell lymphoma: a systematic analysis of 156 patients reported in the literature. Cancer 2004; 101: 1404–13.CrossRefGoogle ScholarPubMed
Garcia-Herrera, A, Song, JY, Chuang, SS, et al. Nonhepatosplenic gamma-delta T-cell lymphomas represent a spectrum of aggressive cytotoxic T-cell lymphomas with a mainly extranodal presentation. Am J Surg Pathol 2011; 35: 1214–25.CrossRefGoogle ScholarPubMed
Kempf, W, Kazakov, D V., Kutzner, H. Lobular panniculitis due to Borrelia burgdorferi infection mimicking subcutaneous panniculitis-like T-cell lymphoma. Am J Dermatopathol 2013; 35. doi:10.1097/DAD.0b013e31827132cb.CrossRefGoogle ScholarPubMed
Calamaro, P, Cerroni, L. Intralymphatic proliferation of T-cell lymphoid blasts in the setting of hidradenitis suppurativa. Am J Dermatopathol 2016; 38: 536–40.CrossRefGoogle ScholarPubMed
Baum, CL, Stone, MS, Liu, V. Atypical intravascular CD30+ T-cell proliferation following trauma in a healthy 17-year-old male: first reported case of a potential diagnostic pitfall and literature review. J Cutan Pathol 2009; 36: 350–4.CrossRefGoogle Scholar
Ardighieri, L, Lonardi, S, Vermi, W, et al. Intralymphatic atypical T-cell proliferation in a cutaneous hemangioma. J Cutan Pathol 2010; 37: 497503.CrossRefGoogle Scholar
Riveiro-Falkenbach, E, Fernández-Figueras, MT, Luis Rodríguez-Peralto, J. Benign atypical intravascular CD30 + T-cell proliferation: a reactive condition mimicking intravascular lymphoma. Am J Dermatopathol 2013; 35: 143–50.CrossRefGoogle ScholarPubMed
Samols, MA, Su, A, Ra, S, et al. Intralymphatic cutaneous anaplastic large cell lymphoma/lymphomatoid papulosis expanding the spectrum of CD30-positive lymphoproliferative disorders. Am J Surg Pathol 2014; 38: 1203–11.CrossRefGoogle ScholarPubMed
Kempf, W, Keller, K, John, H, et al. Benign atypical intravascular CD30+ T-cell proliferation: a recently described reactive lymphoproliferative process and simulator of intravascular lymphoma: report of a Case Associated with Lichen Sclerosus and Review of the Literature. Am J Clin Pathol 2014; 142: 694–9.CrossRefGoogle ScholarPubMed
Jang, NR, Kim, MK, Shin, DH, et al. Benign atypical intralymphatic CD30+ T-Cell proliferation: a case report and literature review. Ann Dermatol; 2019; 31: 108–10.CrossRefGoogle ScholarPubMed
Weingertner, N, Mitcov, M, Chenard, MP, et al. Intralymphatic CD30+ T-cell proliferation during DRESS: a mimic of intravascular lymphoma. J Cutan Pathol 2016; 43: 1036–40.CrossRefGoogle Scholar
Ferrisse, TM, Almeida, LY, Silveira, HA, et al. Benign atypical intralymphatic CD30+ lymphoid proliferation with activated regulatory T-cell phenotype in the oral cavity. J Cutan Pathol 2019; 46: 891–4.CrossRefGoogle ScholarPubMed
Ramsay, B, Dahl, M, Malcolm, A. Acral pseudolymphomatous angiokeratoma of children. Arch Dermatol 1990; 126: 1524–5.CrossRefGoogle ScholarPubMed
Dayrit, JF, Wang, WL, Goh, SGN, et al. T-cell-rich angiomatoid polypoid pseudolymphoma of the skin: a clinicopathologic study of 17 cases and a proposed nomenclature. J Cutan Pathol 2011; 38: 475–82.CrossRefGoogle Scholar
Mitteldorf, C, Palmedo, G, Kutzner, H, et al. Diagnostic approach in lymphoplasmacytic plaque. J Eur Acad Dermatol Venereol; 2015; 29: 2206–15.CrossRefGoogle ScholarPubMed
Lin, W, Lu, S, Chen, H, et al. Clinical characteristics of immunoglobulin G4-related disease: a prospective study of 118 Chinese patients. Rheumatology (United Kingdom) 2015; 54: 1982–90.Google ScholarPubMed
Deshpande, V, Zen, Y, Chan, JKC, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol 2012; 25: 1181–92.CrossRefGoogle ScholarPubMed
Deng, C, Li, W, Chen, S, et al. Histopathological diagnostic value of the IgG4 +/IgG + ratio of plasmacytic infiltration for IgG4-related diseases. Medicine (United States) 2015; 94: e579.Google ScholarPubMed
Sato, Y, Takeuchi, M, Takata, K, et al. Clinicopathologic analysis of IgG4-related skin disease. Mod Pathol 2013; 26: 523–32.CrossRefGoogle ScholarPubMed
Cheuk, W, Lee, KC, Chong, LY, Yuen, ST, Chan, JKC. IgG4-related sclerosing disease: a potential new etiology of cutaneous pseudolymphoma. Am J Surg Pathol 2009; 33: 1713–19.CrossRefGoogle ScholarPubMed
Hattori, T, Miyanaga, T, Tago, O, et al. Isolated cutaneous manifestation of IgG4-related disease. J Clin Pathol 2012; 65: 815–18.CrossRefGoogle ScholarPubMed
Tokura, Y, Yagi, H, Yanaguchi, H, et al. IgG4-related skin disease. Br J Dermatol 2014; 171: 959–67.CrossRefGoogle ScholarPubMed
Skopec, Z, Alsawas, M, Maxwell, T, et al. Assessment of specificity of dermatopathologic criteria for IgG4-related skin disease. J Cutan Pathol 2024; 51: 163–9.CrossRefGoogle ScholarPubMed
Aggarwal, N, Parwani, A V, Ho, J, Cook, JR, Swerdlow, SH. Plasma cell (Zoon) balanitis: another inflammatory disorder that can be rich in IgG4 + plasma cells. Am J Surg Pathol 2014; 38: 1437–43.CrossRefGoogle Scholar
Lehman, JS, Smyrk, TC, Pittelkow, MR. Increased immunoglobulin (Ig) G4-positive plasma cell density and IgG4/IgG ratio are not specific for IgG4-related disease in the skin. Am J Clin Pathol 2014; 141: 234–8.CrossRefGoogle Scholar
Walsh, NM, Kutzner, H, Requena, L, et al. Plasmacytic cutaneous pathology: a review. J Cutan Pathol 2019; 46: 698708.CrossRefGoogle ScholarPubMed
Takeuchi, M, Sato, Y, Takata, K, et al. Cutaneous multicentric Castleman’s disease mimicking IgG4-related disease. Pathol Res Pract 2012; 208: 746–9.CrossRefGoogle ScholarPubMed
Han, XD, Lee, SSJ, Tan, SH, et al. Cutaneous plasmacytosis: a clinicopathologic study of a series of cases and their treatment outcomes. Am J Dermatopathol 2018; 40: 3642.CrossRefGoogle ScholarPubMed
Quintanilla-Martinez, L, Fend, F. Deciphering hydroa vacciniforme. Blood 2019; 133: 2735–7.CrossRefGoogle ScholarPubMed
Montes-Mojarro, IA, Kim, WY, Fend, F, et al. Epstein-Barr virus positive T and NK-cell lymphoproliferations: morphological features and differential diagnosis. Semin Diagn Pathol 2020; 37: 3246.CrossRefGoogle ScholarPubMed
Yamada, M, Ishikawa, Y, Imadome, KI. Hypersensitivity to mosquito bites: a versatile Epstein–Barr virus disease with allergy, inflammation, and malignancy. Allergol Int 2021; 70: 430–8.CrossRefGoogle ScholarPubMed
Tokura, Y, Ishihara, S, Tagawa, S, et al. Hypersensitivity to mosquito bites as the primary clinical manifestation of a juvenile type of Epstein-Barr virus-associated natural killer cell leukemia/lymphoma. J Am Acad Dermatol 2001; 45: 569–78.CrossRefGoogle Scholar
Asada, H. Hypersensitivity to mosquito bites: a unique pathogenic mechanism linking Epstein-Barr virus infection, allergy and oncogenesis. J Dermatol Sci 2007; 45: 153–60.CrossRefGoogle ScholarPubMed
Kanno, H, Onodera, H, Endo, M, et al. Vascular lesion in a patient of chronic active Epstein-Barr virus infection with hypersensitivity to mosquito bites: vasculitis induced by mosquito bite with the infiltration of nonneoplastic Epstein-Barr virus-positive cells and subsequent development of natural killer/T-cell lymphoma with angiodestruction. Hum Pathol 2005; 36: 212–18.Google Scholar
Ishihara, S, Ohshima, K, Tokura, Y, et al. Hypersensitivity to mosquito bites conceals clonal lymphoproliferation of Epstein-Barr viral DNA-positive natural killer cells. Jpn J Cancer Res 1997; 88: 82–7.CrossRefGoogle ScholarPubMed
Cohen, JI, Manoli, I, Dowdell, K, et al. Hydroa vacciniforme-like lymphoproliferative disorder: an EBV disease with a low risk of systemic illness in whites. Blood 2019; 133: 2753–64.CrossRefGoogle ScholarPubMed
Gru, AA, Jaffe, ES. Cutaneous EBV-related lymphoproliferative disorders. Semin Diagn Pathol 2017; 34: 6075.CrossRefGoogle ScholarPubMed
Quintanilla-Martinez, L, Ridaura, C, Nagl, F, et al. Hydroa vacciniforme-like lymphoma: a chronic EBV+ lymphoproliferative disorder with risk to develop a systemic lymphoma. Blood 2013; 122: 3101–10.CrossRefGoogle ScholarPubMed
Iwatsuki, K, Satoh, M, Yamamoto, T, et al. Pathogenic link between hydroa vacciniforme and Epstein-Barr virus-associated hematologic disorders. Arch Dermatol 2006; 142: 587–95.CrossRefGoogle ScholarPubMed
Natkunam, Y, Goodlad, JR, Chadburn, A, et al. EBV-Positive B-cell proliferations of varied malignant potential. Am J Clin Pathol 2017; 147: 129–52.CrossRefGoogle ScholarPubMed
Ikeda, T, Gion, Y, Nishimura, Y, et al. Epstein–barr virus-positive mucocutaneous ulcer: a unique and curious disease entity. Int J Mol Sci 2021; 22: 114.CrossRefGoogle ScholarPubMed
Dojcinov, SD, Venkataraman, G, Raffeld, M, et al. EBV positive mucocutaneous ulcer-A study of 26 cases associated with various sources of immunosuppression. Ame J Surg Pathol 2010; 34: 405–17.Google ScholarPubMed
Sweet, R. An acute febrile neutrophilic dermatosis. Br J Dermatol 1964; 76: 349–56.CrossRefGoogle Scholar
Heath, MS, Ortega-Loayza, AG. Insights into the pathogenesis of Sweet’s syndrome. Front Immunol. 2019; 10. doi:10.3389/fimmu.2019.00414.CrossRefGoogle ScholarPubMed
Cohen, PR. Sweet’s syndrome: a comprehensive review of an acute febrile neutrophilic dermatosis. Orphanet J Rare Dis. 2007; 2. doi:10.1186/1750-1172-2-34.CrossRefGoogle ScholarPubMed
Passet, M, Lepelletier, C, Vignon-Pennamen, MD, et al. Next-generation sequencing in myeloid neoplasm-associated Sweet’s syndrome demonstrates clonal relation between malignant cells and skin-infiltrating neutrophils. J Invest Dermatol 2020; 140: 1873–6. e5. doi: 10.1016/j.jid.2019.12.040CrossRefGoogle ScholarPubMed
Prieto-Torres, L, Requena, L, Rodríguez-Pinilla, SM. Clinical, histopathological and molecular spectrum of cutaneous lesions in myelodysplastic syndrome and myeloproliferative neoplasms (MDS/MPN): an integrative review. Cancers 2023; 15. doi:10.3390/cancers15245888.CrossRefGoogle ScholarPubMed
Requena, L, Kutzner, H, Palmedo, G, et al. Histiocytoid Sweet syndrome: a dermal infiltration of immature neutrophilic granulocytes. Arch Dermatol 2005; 141: 834–42.CrossRefGoogle ScholarPubMed
Alegría-Landa, V, Rodríguez-Pinilla, SM, Santos-Briz, A, et al. Clinicopathologic, immunohistochemical, and molecular features of histiocytoid sweet syndrome. JAMA Dermatol 2017; 153: 651–9.CrossRefGoogle ScholarPubMed
Delaleu, J, Kim, R, Zhao, LP, et al. Clinical, pathological, and molecular features of myelodysplasia cutis. Blood 2022; 139: 1251–3.CrossRefGoogle ScholarPubMed
Pincus, LB, Leboit, PE, Mccalmont, TH, et al. Subcutaneous panniculitis-like T-cell lymphoma with overlapping clinicopathologic features of lupus erythematosus: coexistence of 2 entities? Am J Dermatopathol 2009; 31: 520–6.CrossRefGoogle ScholarPubMed
Shiau, CJ, Daoud, MSA, Wong, SM, et al. Lymphocytic panniculitis: an algorithmic approach to lymphocytes in subcutaneous tissue. J Clin Pathol 2015; 68: 954–62.CrossRefGoogle ScholarPubMed
Lozzi, GP, Massone, C, Citarella, L, et al. Rimming of adipocytes by neoplastic lymphocytes: a histopathologic feature not restricted to subcutaneous T-cell lymphoma. Am J Dermatopathol 2006; 28: 912.CrossRefGoogle Scholar
Ghoufi, L, Ortonne, N, Ingen-Housz-Oro, S, et al. Histiocytoid Sweet syndrome is more frequently associated with myelodysplastic syndromes than the classical neutrophilic variant. Medicine 2016; 95. e3033. doi:10.1097/MD.0000000000003033.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×