Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-ks5gx Total loading time: 0 Render date: 2025-06-18T21:02:33.507Z Has data issue: false hasContentIssue false

Chapter 9 - Miscellaneous Tumors

Published online by Cambridge University Press:  17 June 2025

Mai P. Hoang
Affiliation:
Harvard Medical School, Boston
Get access

Summary

The histogenesis of a variety of tumors such as epithelioid sarcoma, alveolar soft part sarcoma, and synovial sarcoma remains unknown. Tumors of histiocytic origin include Erdheim-Chester disease and histiocytic sarcoma and dendritic cell tumors include Langerhans cell histiocytosis, follicular dendritic cell sarcoma, and interdigitating dendritic cell sarcoma. Despite their similar histopathologic appearance, tumors of histiocytic and dendritic cell origin have different immunoprofile and immunohistochemistry is essential in classifying these tumors. Leukemia cutis or granulocytic or myeloid sarcoma is comprised of immature myeloid precursor cells. Lymphoblastic lymphomas are derived from precursor B- or T-cell lymphocytes. Cutaneous involvement can be the sole manifestation of these diseases, during or after development of bone marrow leukemia. In this chapter these miscellaneous entities as well as Merkel cell carcinoma, myoepithelioma, myoepithelial carcinoma, Ewing sarcoma, and mast cell infiltrate are discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Feng, H, Shuda, M, Chang, Y, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008; 319: 1096–100.CrossRefGoogle ScholarPubMed
Ogawa, T, Donizy, P, Wu, CL, et al. Morphologic diversity of Merkel cell carcinoma. Am J Dermatopathol 2020; 42: 629–40.CrossRefGoogle ScholarPubMed
Harms, KL, Zhao, L, Johnson, B, et al. Virus-positive Merkel cell carcinoma is an independent prognostic group with distinct predictive biomarkers. Clin Cancer Res 2021; 27: 2494–504.CrossRefGoogle Scholar
Kervarrec, T, Appenzeller, S, Samimi, M, et al. Merkel cell polyomavirus-negative Merkel cell carcinoma originating from in situ squamous cell carcinoma: a keratinocytic tumor with neuroendocrine differentiation. J Invest Dermatol 2022; 142: 516–27.CrossRefGoogle ScholarPubMed
Rocamora, A, Badia, N, Vives, R, Carrillo, R, Ulloa, J, Ledo, A. Epidermotropic primary neuroendocrine (Merkel cell) carcinoma of the skin with Pautrier-like microabscesses: report of three cases and review of the literature. J Am Acad Dermatol 1987; 16: 1163–8.CrossRefGoogle ScholarPubMed
Buresh, CJ, Oliai, BR, Miller, RT. Reactivity with TdT in Merkel cell carcinoma: a potential diagnostic pitfall. Am J Clin Pathol 2008; 129: 894–8.CrossRefGoogle ScholarPubMed
Byrd-Gloster, AL, Khoor, A, Glass, LF, et al. Differential expression of thyroid trancription factor 1 in small cell lung carcinoma and Merkel cell tumor. Hum Pathol 2000; 31: 5862.CrossRefGoogle Scholar
Dong, HY, Liu, W, Cohen, P, Mahle, CE, Zhang, W. B-cell specific activation protein encoded by the PAX-5 gene is commonly expressed in merkel cell carcinoma and small cell carcinomas. Am J Surg Pathol 2005; 29: 687–92.CrossRefGoogle ScholarPubMed
Drijkoningen, M, de Wolf-Peeters, C, van Limbergen, E, Desmet, V. Merkel cell tumor of the skin: an immunohistochemical study. Hum Pathol 1986; 17: 301–7.CrossRefGoogle ScholarPubMed
Filtenborg-Barnkob, BE, Bzorek, M. Expression of anaplastic lymphoma kinase in Merkel cell carcinomas. Hum Pathol 2013; 44: 1656–64.CrossRefGoogle ScholarPubMed
He, H, Fang, W, Liu, X, Weiss, LM, Chu, PG. Frequent expression of glypican-3 in Merkel cell carcinoma: an immunohistochemical study of 55 cases. Appl Immunohistochem Mol Morphol 2009; 17: 40–6.CrossRefGoogle ScholarPubMed
Jensen, K, Kohler, S, Rouse, RV. Cytokeratin staining in Merkel cell carcinoma: an immunohistochemical study of cytokeratins 5/6, 7, 17, and 20. Appl Immunohistochem Mol Morpphol 2000; 8: 310–15.Google ScholarPubMed
Kolhe, R, Reid, MD, Lee, JR, Cohen, C, Ramalingam, P. Immunohistochemical expression of PAX5 and TdT by Merkel cell carcinoma and pulmonary small cell carcinoma: a potential diagnostic pitfall but useful discriminatory marker. Int J Clin Exp Pathol 2013; 6: 142–7.Google ScholarPubMed
Llombart, B, Monteagudo, C, Lopez-Guerrero, JA, et al. Clinicopapthological and immunohistochemical analysis of 20 cases of Merkel cell carcinoma in search of prognostic markers. Histopathology 2005; 46: 622–34.CrossRefGoogle ScholarPubMed
Ly, TY, Walsh, NM, Pasternak, S. The spectrum of Merkel cell polyomavirus expression in Merkel cell carcinoma, in a variety of cutaneous neoplasms, and in neuroendocrine carcinomas from different anatomic sites. Hum Pathol 2012; 43: 557–66.CrossRefGoogle Scholar
Matsushita, M, Nonaka, D, Iwasaki, T, et al. A new in situ hybridization and immunohistochemistry with a novel antibody to detect small T-antigen expressions of Merkel cell polyomavirus (MCPyV). Diagn Pathol 2014; 9: 65. doi: 10.1186/1746-1596-9-65.CrossRefGoogle ScholarPubMed
McNiff, JM, Cowper, SE, Lazova, R, Subtil, A, Glusac, EJ. CD56 staining in Merkel cell carcinoma and natural killer-cell lymphoma: magic bullet, diagnostic pitfall, or both? J Cutan Pathol 2005; 32: 541–5.CrossRefGoogle ScholarPubMed
Mhawech-Fauceglia, P, Saxena, R, Zhang, S, et al. Pax-5 immunoexpression in various types of benign and malignant tumours: a high-throughput tissue microarray analysis. J Clin Pathol 2007; 60: 709–14.CrossRefGoogle ScholarPubMed
Paik, JY, Hall, G, Clarkson, A, et al. Immunohistochemistry for Merkel cell polyomavirus is highly specific but not sensitive for the diagnosis of Merkel cell carcinoma in the Australian population. Hum Pathol 2011; 42: 1385–90.CrossRefGoogle Scholar
Molina-Ruiz, AM, Santonja, C, Rütten, A, Cerroni, L, Kutzner, H, Requena, L. Immunohistochemistry in the diagnosis of cutaneous viral infections- part II: cutaneous viral infections by parvoviruses, poxviruses, paramyxoviridae, picornaviridae, retroviruses and filoviruses. Am J Dermatopathol 2015; 37: 93106.CrossRefGoogle ScholarPubMed
Rajagopalan, A, Browning, D, Salama, S. CD99 expression in Merkel cell carcinoma: a case series with an unusual paranuclear dot-like staining pattern. J Cutan Pathol 2013; 40: 1924.CrossRefGoogle ScholarPubMed
Sangoi, AR, Cassarino, DS. PAX-8 expression in primary and metastatic Merkel cell carcinoma: an immunohistochemical analysis. Am J Dermatopathol 2013; 35: 448–51.CrossRefGoogle ScholarPubMed
Sidiropoulos, M, Hanna, W, Raphael, SJ, Ghorab, Z. Expression of TdT in Merkel cell carcinoma and small cell lung carcinoma. Am J Clin Pathol 2011; 135: 831–8.CrossRefGoogle ScholarPubMed
Stetsenko, GY, Malekirad, J, Paulson, KG, et al. p63 expression in Merkel cell carcinoma predicts poorer survival yet may have limited clinical activity. Am J Clin Pathol 2013; 140: 838–44.CrossRefGoogle Scholar
Su, LD, Fullen, DR, Lowe, L, Uherova, P, Schnitzer, B, Valdez, R. CD117 (kit receptor) expression in Merkel cell carcinoma. Am J Dermatopathol 2002; 24: 289–93.CrossRefGoogle ScholarPubMed
Sur, M, AlArdati, H, Ross, C, Alowami, S. TdT expression in Merkel cell carcinoma: potential diagnostic pitfall with blastic hematological malignancies and expanded immunohistochemical analysis. Mod Pathol 2007; 20: 1113–20.CrossRefGoogle ScholarPubMed
McCalmont, TH. Paranuclear dots of neurofilament reliably identify Merkel cell carcinoma. J Cutan Pathol 2010; 37: 821–3.CrossRefGoogle ScholarPubMed
Hanly, AJ, Elgart, GW, Jorda, M, Smith, J, Nadji, M. Analysis of thyroid transcription factor-1 and cytokeratin 20 separates merkel cell carcinoma from small cell carcinoma of lung. J Cutan Pathol 2000; 27: 118–20.CrossRefGoogle ScholarPubMed
Karpinski, P, Mendez-Pena, JE, Wu, C-L, et al. POU4F3 is a sensitive and specific marker of Merkel cell carcinoma. Modern Pathol 2025; 38: 100627. doi: 10.1016/j.modpat.2024.100627.CrossRefGoogle ScholarPubMed
Calder, KB, Coplowitz, S, Schlauder, S, Morgan, MB. A case series and immunophenotypic analysis of CK20-/CK7+ primary neuroendocrine carcinoma of the skin. J Cutan Pathol 2007; 34: 918–23.CrossRefGoogle ScholarPubMed
Shalin, SC, Cifarelli, CP, Suen, JY, Gao, L. Loss of cytokeratin 20 and acquisition of thyroid transcription factor-1 expression in a merkel cell carcinoma metastasis to the brain. Am J Dermatopathol 2014; 36: 904–6.CrossRefGoogle Scholar
Zur Hausen, A, Rennspiess, D, Winnepenninckx, V, Speel, EJ, Kurz, AK. Early B-cell differentiation in Merkel cell carcinomas: clues to cellular ancestry. Cancer Res 2013; 15: 4982–7.Google Scholar
Kutzner, H, Mentzel, T, Kaddu, S, Soares, LM, Sangueza, OP, Requena, L. Cutaneous myoepithelioma: an under-recognized cutaneous neoplasm composed of myoepithelial cells. Am J Surg Pathol 2001; 25: 348–55.CrossRefGoogle ScholarPubMed
Hornick, JL, Fletcher, CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am J Surg Pathol 2003; 27: 1183–96.CrossRefGoogle Scholar
Jo, VY, Fletcher, CD. Myoepithelial neoplasms of soft tissue: an updated review of the clinicopathologic, immunophenotypic, and genetic features. Head Neck Pathol 2015; 9: 32–8.CrossRefGoogle ScholarPubMed
Gleason, BC, Fletcher, CD. Myoepithelial carcinoma of soft tissue in children: an aggressive neoplasm analyzed in a series of 29 cases. Am J Surg Pathol 2007; 31: 1813–24.CrossRefGoogle Scholar
Folpe, AL, Schoolmeester, JK, McCluggage, WG, et al. SMARCB1-deficient vulvar neoplasms: a clinicopathologic, immunohistochemical, and molecular genetic study of 14 cases. Am J Surg Pathol. 2015; 39: 836–49.CrossRefGoogle ScholarPubMed
Jo, VY, Antonescu, CR, Dickson, BC, et al. Cutaneous syncytial myoepithelioma is characterized by recurrent EWSR1-PBX3 fusions. Am J Surg Pathol 2019; 43: 1349–54.CrossRefGoogle ScholarPubMed
Antonescu, CR, Zhang, L, Chang, NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors: a molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 2010; 49: 1114–24.CrossRefGoogle ScholarPubMed
Suurmeijer, AJH, Dickson, BC, Swanson, D, et al. A morphologic and molecular reappraisal of myoepithelial tumors of soft tissue, bone, and viscera with EWSR1 and FUS gene rearrangements. Genes Chromosomes Cancer 2020; 59: 348–56.CrossRefGoogle ScholarPubMed
Bahrami, A, Dalton, JD, Krane, JF, Fletcher, CDM. A subset of cutaneous and soft tissue mixed tumors are genetically linked to their salivary gland counterpart. Genes Chromosomes Cancer 2012; 51: 140–8.CrossRefGoogle ScholarPubMed
Miettinen, M, Farnburg-Smith, JV, Virolainen, M, Shmookler, BM, Fetsch, JF. Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a distinction of the differential diagnosis. Hum Pathol 1999; 30: 934–42.CrossRefGoogle Scholar
Oda, Y, Tsuneyoshi, M. Extrarenal rhabdoid tumors of the soft tissue: clinicopathological and molecular genetic review and distinction from other soft tissue sarcomas with rhabdoid features. Pathol Int 2006; 56: 287–95.CrossRefGoogle ScholarPubMed
Hornick, JL, Dal Cin, P, Fletcher, CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol 2009; 33: 542–50.CrossRefGoogle ScholarPubMed
Kohashi, K, Yamada, Y, Hotokebuchi, Y, et al. ERG and SALL4 expression in SMARCB1/INI1-deficient tumors: a useful tool for distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol 2015; 46: 225–30.CrossRefGoogle ScholarPubMed
Hollmann, TJ, Hornick, JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol 2011; 35: e47e63.CrossRefGoogle ScholarPubMed
Kohashi, K, Oda, Y, Yamamoto, H, et al. Reduced expression of SMARCB1/INI1 protein in synovial sarcoma. Mod Pathol 2010; 23: 981–90.CrossRefGoogle ScholarPubMed
Gounder, MM, Agaram, NP, Trabucco, SE, et al. Clinical genomic profiling in the management of patients with soft tissue and bone sarcoma. Nat Commun 2022; 13: 3406. doi: 10.1038/s41467-022-30496-0.CrossRefGoogle ScholarPubMed
Sullivan, LM, Folpe, AL, Pawel, BR, Judkins, AR, Biegel, JA. Epithelioid sarcoma is associated with a high percentage of SMARCB1 deletions. Mod Pathol 2013; 26: 385–92.CrossRefGoogle ScholarPubMed
Jamshidi, F, Bashashati, A, Shumansky, K, et al. The genomic landscape of epithelioid sarcoma cell lines and tumours. J Pathol 2016; 238: 6373.CrossRefGoogle ScholarPubMed
Rossi, S, Orvieto, E, Furlanetto, A, et al. Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody. Mod Pathol 2004; 17: 547–52.CrossRefGoogle ScholarPubMed
Folpe, AL, Hill, CE, Parham, DM, O’Shea, PA, Weiss, SW. Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing’s sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol 2000; 24: 1657–62.CrossRefGoogle ScholarPubMed
Tomlins, SA, Palanisamy, N, Brenner, JC, et al. Usefulness of a monoclonal ERG/FLI1 antibody for immunohistochemical discrimination of Ewing family tumors. Am J Clin Pathol 2013; 139: 771–9.CrossRefGoogle ScholarPubMed
Hung, YP, Fletcher, CDM, Hornick, JL. Evaluation of NKX2-2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol 2016; 29: 370–80.CrossRefGoogle ScholarPubMed
Llombart-Bosh, A, Navarro, S. Immunohistochemical detection of EWS and FLI-1 proteinss in Ewing sarcoma and primitive neuroectodermal tumors: comparative analysis with CD99 (MIC-2) expression. Appl Immunohistochem Mol Morphol 2001; 9: 255–60.Google Scholar
Wang, WL, Patel, NR, Caragea, M, et al. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol 2012; 25: 1378–83.CrossRefGoogle Scholar
Mhawech-Fauceglia, P, Herrmann, F, Penetrante, R, et al. Diagnostic utility of FLI-1 monoclonal antibody and dual-colour, break-apart probe fluorescence in situ (FISH) analysis in Ewing’s sarcoma/primitive neuroectodermal tumour (EWS/ PNET): a comparative study with CD99 and FLI-1 polyclonal antibodies. Histopathology 2006; 49: 569–75.CrossRefGoogle ScholarPubMed
Miettinen, M, Ekfors, T. Alveolar soft part sarcoma: immunohistochemical evidence for muscle cell differentiation. Am J Clin Pathol 1990; 93: 32–8.CrossRefGoogle ScholarPubMed
Argani, P, Lal, P, Hutchinson, B, Lui, MY, Reuter, VE, Ladanyi, M. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol 2003; 27: 750–61.CrossRefGoogle ScholarPubMed
Rekhi, B, Ingle, A, Agarwal, M, Puri, A, Laskar, S, Jambhekar, NA. Alveolar soft tissue sarcoma “revisited”: clinicopathologic review of 47 cases from a tertiary cancer referral centre, including immunohistochemical expression of TFE3 in 22 cases and 21 other tumours. Pathology 2012; 44: 1117.CrossRefGoogle ScholarPubMed
Williams, A, Bartle, G, Sumathi, VP, et al. Detection of ASPL/TFE3 fusion transcripts and the TFE3 antigen in formalin-fixed, paraffin-embedded tissue in a series of 18 cases of alveolar soft part sarcoma: useful diagnostic tools in cases with unusual histological features. Virchows Arch 2011; 458: 291300.CrossRefGoogle Scholar
Argani, P, Antonescu, CR, Couturier, J, et al. PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Am J Surg Pathol 2002; 26: 1553–66.CrossRefGoogle Scholar
Pang, LJ, Chang, B, Zou, H, et al. Alveolar soft part sarcoma: a bimarker diagnostic strategy using TFE3 immunoassay and ASPL-TFE3 fusion transcripts in paraffin-embedded tumor tissues. Diagn Mol Pathol 2008; 17: 245–52.CrossRefGoogle ScholarPubMed
Tsuji, K, Ishikawa, Y, Imamura, T. Technique for differentiating alveolar soft part sarcoma from other tumors in paraffin-embedded tissue: comparison of immunohistochemistry for TFE3 and CD147 and of reverse transcription polymerase chain reaction for ASPSCR1-TFE3 transcript. Hum Pathol 2012; 43: 356–63.CrossRefGoogle ScholarPubMed
Dickson, BC, Chung, CTS, Hurlbut, DJ, et al. Genetic diversity in alveolar soft part sarcoma: a subset contain variant fusion genes, highlighting broader molecular kinship with other MiT family tumors. Genes Chromosomes Cancer 2020; 59: 23–9.CrossRefGoogle ScholarPubMed
Miettinen, M, Limon, J, Niezabitowski, A, Lasota, J. Patterns of keratin polypeptides in 110 biphasic, monophasic, and poorly differentiated synovial sarcomas. Virchows Arch 2000; 437: 275–83.CrossRefGoogle ScholarPubMed
O’Sullivan, MJ, Kyriakos, M, Zhu, X, et al. Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000; 13: 1253–63.Google Scholar
Baranov, E, McBride, MJ, Bellizzi, AM, et al. A Novel SS18-SSX Fusion-specific antibody for the diagnosis of synovial sarcoma. Am J Surg Pathol 2020; 44: 922–33.CrossRefGoogle ScholarPubMed
Foo, WC, Cruise, MW, Wick, MR, Hornick, JL. Immunohistochemistry staining for TLE1 distinguishes synovial sarcoma from histologic mimics. Am J Clin Pathol 2011; 135: 839–44.CrossRefGoogle ScholarPubMed
Valente, AL, Tull, J, Zhang, S. Specificity of TLE1 expression in unclassified high-grade sarcomas for the diagnosis of synovial sarcoma. Appl Immunohistochem Mol Morphol 2013; 21: 408–13.CrossRefGoogle ScholarPubMed
Fletcher, CDM, Bridge, JA, Hogendoorn, P, Mertens, F. WHO classification of tumours editorial board: soft tissue and bone tumours. 5th ed. Lyon, France: IARC; 2020.Google Scholar
Agaram, NP, Zhang, L, Sung, YS, et al. Recurrent NTRK1 Gene fusions define a novel subset of locally aggressive lipofibromatosis-like neural tumors. Am J Surg Pathol 2016; 40: 1407–16.CrossRefGoogle ScholarPubMed
Suurmeijer, AJH, Davis, JL. NTRK-rearranged spindle cell neoplasm. In: WHO classification of tumours editorial board: soft tissue and bone tumours. 5th ed. Lyon, France: IARC; 2020.Google Scholar
Bautista-Wong, C, Mojica-Gonzalez, Z, Hop-Garcia, K, Quevedo, LB. The pan-TRK antibody is a sensitive and specific tool for the detection of NTRK fusion genes. Appl Immunohistochem Mol Morphol 2023; 31: 213–16.CrossRefGoogle ScholarPubMed
Davis, JL, Lockwood, CM, Stohr, B, et al. Expanding the spectrum of pediatric NTRK-rearranged mesenchymal tumors. Am J Surg Pathol 2019; 43: 435–45.CrossRefGoogle ScholarPubMed
Browne, TJ, Fletcher, CDM. Haemosiderotic fibrolipomatous tumour (so-called haemosiderotic fibrohistiocytic lipomatous tumour): analysis of 13 new cases in support of a distinct entity. Histopathology 2006; 48: 453–61.CrossRefGoogle ScholarPubMed
Antonescu, CR, Zhang, L, Nielsen, GP, et al. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011; 50: 757–64.CrossRefGoogle ScholarPubMed
Carter, JM, Sukov, WR, Montgomery, E, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms. Am J Surg Pathol 2014; 38: 1182–92.CrossRefGoogle ScholarPubMed
Folpe, AL, Weiss, SW. Pleomorphic hyalinizing angiectatic tumor: analysis of 41 cases supporting evolution from a distinctive precursor lesion. Am J Surg Pathol 2004; 28: 1417–25.CrossRefGoogle ScholarPubMed
Emile, JF, Abla, O, Fraitag, S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood 2016; 127: 2672–81.CrossRefGoogle ScholarPubMed
Khoury, JD, Solary, E, Abla, O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 2022; 36: 1703–19.CrossRefGoogle ScholarPubMed
Friedman, JS, Durham, BH, Reiner, AS, et al. Mixed histiocytic neoplasms: a multicenter series revealing diverse somatic mutations and responses to targeted therapy. Br J Haematol 2024; 205:127–137.CrossRefGoogle Scholar
Hervier, B, Haroche, J, Arnaud, L, et al. Association of both Langerhans cell histiocytosis and Erdheim‐Chester disease linked to the BRAFV600E mutation. Blood 2014; 124: 1119–26.CrossRefGoogle Scholar
Kapur, P, Erickson, C, Rakheja, D, Carder, KR, Hoang, MP. Congenital self-healing reticulohistiocytosis (Hashimoto-Pritzker disease): ten-year experience at Dallas Children’s Medical Center. J Am Acad Dermatol 2007; 56: 290–4.CrossRefGoogle ScholarPubMed
Go, H, Jeon, YK, Huh, J, et al. Frequent detection of BRAFV600E mutation in histiocytic and dendritic cell neoplasms. Histopathology 2014; 65: 261–72.CrossRefGoogle ScholarPubMed
Wang, CJ, Cui, L, Li, SS, et al. Genetic landscape and its prognostic impact in children with Langerhans cell histiocytosis. Arch Pathol Lab Med 2025; 149: 175-190.CrossRefGoogle ScholarPubMed
Shao, H, Xi, L, Raffeld, M, et al. Clonally related histiocytic/dendritic cell sarcoma and chronic lymphocytic leukemia/small lymphocytic lymphoma: a study of seven cases. Mod Pathol 2011; 24: 1421–32.CrossRefGoogle ScholarPubMed
West, DS, Dogan, A, Quint, PS, et al. Clonally related follicular lymphomas and Langerhans cell neoplasms: expanding the spectrum of transdifferentiation. Am J Surg Pathol 2013; 37: 978–86.CrossRefGoogle ScholarPubMed
McDermott, R, Ziylan, U, Spehner, D, et al. Birbeck granules are subdomains of endosomal recycling compartment in human epidermal Langerhans cells, which form where Langerin accumulates. Mol Biol Cell 2002; 13: 317–35.Google Scholar
Massoth, LR, Hung, YP, Ferry, JA, et al. Histiocytic and dendritic cell sarcomas of hematopoietic origin share targetable genomic alterations distinct from follicular dendritic cell sarcoma. Oncologist 2021; 26: e1263e1272. doi: 10.1002/onco.13801.CrossRefGoogle ScholarPubMed
Hornick, JL, Jaffe, ES, Fletcher, CD. Extranodal histiocytic sarcoma: clinicopathologic analysis of 14 cases of a rare epithelioid malignancy. Am J Surg Pathol 2004; 28: 1133–44.CrossRefGoogle ScholarPubMed
Egan, C, Lack, J, Skarshaug, S, et al. The mutational landscape of histiocytic sarcoma associated with lymphoid malignancy. Mod Pathol 2021; 34: 336–47.CrossRefGoogle ScholarPubMed
Pileri, SA, Grogan, TM, Harris, NL, et al. Tumours of histiocytes and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology 2002; 41: 129.CrossRefGoogle Scholar
Emile, JF, Abla, O, Fraitag, S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood 2016; 127: 2672–81.CrossRefGoogle ScholarPubMed
Kobic, A, Shah, KK, Schmitt, AR, et al. Erdheim-Chester disease: expanding the spectrum of cutaneous manifestations. Br J Dermatol 2020; 182: 405–9.CrossRefGoogle ScholarPubMed
Estrada-Veras, JI, O’Brien, KJ, Boyd, LC, et al. The clinical spectrum of Erdheim-Chester disease: an observational cohort study. Blood Adv 2017; 1: 357–66.CrossRefGoogle ScholarPubMed
Foucar, E, Rosai, J, Dorfman, R. Sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease): review of the entity. Semin Diagn Pathol 1990; 7: 1973.Google ScholarPubMed
Dhrif, O, Litaiem, N, Lahmar, W, Fatnassi, F, Slouma, M, Zeglaoui, F. Cutaneous Rosai-Dorfman disease: a systematic review and reappraisal of its treatment and prognosis. Arch Dermatological Res 2024; 316: 393. doi: 10.1007/s00403-024-02982-6.CrossRefGoogle ScholarPubMed
Levine, PH, Jahan, N, Murari, P, Manak, M, Jaffe, ES. Detection of human herpesvirus 6 in tissues involved by sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease). J Infect Dis 1992; 166: 291–5.CrossRefGoogle ScholarPubMed
Mehraein, Y, Wagner, M, Remberger, K, et al. Parvovirus B19 detected in Rosai-Dorfman disease in nodal and extranodal manifestations. J Clin Pathol 2006; 59: 1320–6.CrossRefGoogle ScholarPubMed
Al-Daraji, W, Anandan, A, Klassen-Fischer, M, Auerbach, A, Marwaja, JS, Fanburg-Smith, JC. Soft tissue Rosai-Dorfman disease: 29 new lesions in 18 patients, with detection of polyomavirus antigen in 3 abdominal cases. Ann Diagn Pathol 2010; 14: 309–16.CrossRefGoogle ScholarPubMed
Delacretaz, F, Meuge-Moraw, C, Anwar, D, Borisch, B, Chave, JP. Sinus histiocytosis with massive lymphadenopathy (Rosai Dorfman disease) in an HIV-positive patient. Virchows Arch A Pathol Anat Histopathol 1991; 419: 251–4.CrossRefGoogle Scholar
Perrin, C, Michiels, JF, Lacour, JP, Chagnon, A, Fuzibet, JG. Sinus histiocytosis (Rosai-Dorfman disease) clinically limited to the skin. An immunohistochemical and ultrastructural study. J Cutan Pathol 1993; 20: 368–74.CrossRefGoogle Scholar
Slone, SP, Fleming, DR, Buchino, JJ. Sinus histiocytosis with massive lymphadenopathy and Langerhans cell histiocytosis express the cellular adhesion molecule CD31. Arch Pathol Lab Med 2003; 127: 341–4.CrossRefGoogle ScholarPubMed
Ravindran, A, Goyal, G, Go, RS, Rech, KL; Mayo Clinic Histiocytosis Working Group. Rosai-Dorfman disease displays a unique monocyte-macrophage phenotype characterized by expression of OCT2. Am J Surg Pathol 2021; 45: 3544.CrossRefGoogle ScholarPubMed
Koh, KN, Yoon, SH, Kang, SH, Kim, H, Im, HJ. Advancements in the understanding and management of histiocytic neoplasms. Blood Res 2024; 59: 22. doi: 10.1007/s44313-024-00022-w.CrossRefGoogle ScholarPubMed
Garces, S, Medeiros, LJ, Patel, KP, et al. Mutually exclusive recurrent KRAS and MAP2K1 mutations in Rosai-Dorfman disease. Mod Pathol 2017; 30: 1367–77.CrossRefGoogle ScholarPubMed
Chang, KTE, Tay, AZE, Kuick, CH, et al. ALK-positive histiocytosis: an expanded clinicopathologic spectrum and frequent presence of KIF5B-ALK fusion. Mod Pathol 2019; 32: 598608.CrossRefGoogle ScholarPubMed
Chan, J, Yoshida, A, Emile, F, et al. ALK-positive histiocytosis. In: WHO Classification of Tumours Series. Haematolymphoid tumours. 5th ed,; vol.11. Lyon (France): International Agency for Research on Cancer; 2024. https://publications.iarc.who.int/Google Scholar
Kemps, PG, Picarsic, J, Durham, BH, et al. ALK-positive histiocytosis: a new clinicopathologic spectrum highlighting neurologic involvement and responses to ALK inhibition. Blood 2022; 139: 256–80.CrossRefGoogle ScholarPubMed
Zhang, XY, Li, J, Chen, SL, Li, Y, Wang, H, He, JH. Malakoplakia with aberrant ALK expression by immunohistochemistry: a case report. Diagn Pathol 2023; 18: 97. doi: 10.1186/s13000-023-01383-z.CrossRefGoogle ScholarPubMed
Polat Ekinci, A, Buyukbabani, N, Baykal, C. Novel clinical observations on benign cephalic histiocytosis in a large series. Pediatr Dermatol 2017; 34: 392–7.CrossRefGoogle Scholar
Gianotti, R, Alessi, E, Caputo, R. Benign cephalic histiocytosis: a distinct entity or a part of a wide spectrum of histiocytic proliferative disorders of children? A histopathological study. Am J Dermatopathol 1993; 15: 315–19.CrossRefGoogle ScholarPubMed
Requena, C, Requena, L, Traves, V, Sanmartin, O. Hereditary progressive mucinous histiocytosis: 3 different phenotypes in 3 family members. J Cutan Pathol 2017; 44: 781–5.CrossRefGoogle ScholarPubMed
Schlegel, C, Metzler, G, Burgdorf, W, Schaller, M. Hereditary progressive mucinous histiocytosis: first report in a male patient. Acta Derm Venereol 2010; 90: 65–7.CrossRefGoogle ScholarPubMed
Salari, B, Dehner, LP. Juvenile and adult xanthogranuloma: a 30-year single-center experience and review of the disorder and its relationship to other histiocytoses. Ann Diagn Pathol 2022; 58: 151940.CrossRefGoogle ScholarPubMed
Oza, VS, Stringer, T, Campbell, C, et al. Congenital-type juvenile xanthogranuloma: a case series and literature review. Pediatr Dermatol 2018; 35: 582–7.CrossRefGoogle ScholarPubMed
Dehner, LP. Juvenile xanthogranulomas in the first two decades of life: a clinicopathologic study of 174 cases with cutaneous and extracutaneous manifestations. Am J Surg Pathol 2003; 27: 579–93.CrossRefGoogle ScholarPubMed
Janssen, D, Harms, D. Juvenile xanthogranuloma in childhood and adolescence: a clinicopathologic study of 129 patients from the Kiel pediatric tumor registry. Am J Surg Pathol 2005; 29: 21–8.Google ScholarPubMed
Zou, T, Wei, A, Ma, H, et al. Systemic juvenile xanthogranuloma: a systemic review. Pediatr Blood Cancer 2023; 70: e30232. doi: 10.1002/pbc.30232.CrossRefGoogle Scholar
Sangueza, OP, Salmon, JK, White, CR Jr, Beckstead. Juvenile xanthogranuloma: a clinical, histopathologic and immunohistochemical study. J Cutan Pathol 1995; 22: 327–35.CrossRefGoogle ScholarPubMed
Umphress, B, Kuhar, M, Kowal, R, et al. NTRK expression is common in xanthogranuloma and is associated with the solitary variant. J Cutan Pathol 2023; 50: 9911000.CrossRefGoogle ScholarPubMed
Ungureanu, IA, Cohen-Aubart, F, Heritier, S, Haroche, J, Donadieu, J, Emile, JF. PU.1 is useful nuclear marker to distinguish between histiocytosis and histiocyte-rick tumours. Histopathology 2023; 83: 320–5.CrossRefGoogle ScholarPubMed
Sanchez-Alvarez, C, Sandhu, AS, Crowson, CS, et al. Multicentric reticulohistiocytosis: the Mayo Clinic experience (1980–2017). Rheumatology 2020; 59: 1898–905.CrossRefGoogle Scholar
Zelger, B, Cerio, R, Soyer, HP, Misch, K, Orchard, G, Wilson-Jones, E. Reticulohistiocytoma and multicentric reticulohistiocytosis. Histopathologic and immunophenotypic distinct entities. Am J Dermatopathol 1994; 16: 577–84.Google ScholarPubMed
Tashiro, A, Takeuchi, S, Nakahara, T, et al. Aberrant expression of CD10 in ground-glass-like multinucleated giant cells of multicentric reticulohistiocytosis. J Dermatol 2010; 37: 995–7.CrossRefGoogle ScholarPubMed
Kucukardali, Y, Solmazgul, E, Kunter, E, et al. Kikuchi-Fujimoto disease: analysis of 244 cases. Clin Rheumatol 2007; 26: 50–4.CrossRefGoogle ScholarPubMed
Wang, W, Huang, S, Nong, L, Li, X, Li, D, Zhang, B, Li, T. Clinicopathologic analysis of Kikuchi-Fujimoto disease and etiologic exploration using metagenomic next-generation sequencing. Arch Pathol Lab Med 2023; 147: 767–73.CrossRefGoogle ScholarPubMed
Marshall, EH, Brumbaugh, B, Holt, A, Chen, ST, Hoang, MP. Cutaneous intravascular hematolymphoid entities: a review. Diagnostics 2024; 14: 679. doi: 10.3390/diagnostics14070679.CrossRefGoogle ScholarPubMed
Requena, L, El-Shabrawi-Caelen, L, Walsh, SN, et al. Intralymphatic histiocytosis: a clinicopathologic study of 16 cases. Am J Dermatopathol 2009; 31: 140–51.CrossRefGoogle ScholarPubMed
Zanella, S, Berti, E, Bonometti, A ; for Associazione Italiana Ricerca Istiocitosi ONLUS. Indeterminate cell histiocytosis: A systematic review of the literature with a comprehensive revision of clinical, histopathological, and molecular features. J Eur Acad Dermatol Venereol 2023; Apr 5. doi: 10.1111/jdv.19095. Online ahead of print. PMID: 37016977CrossRefGoogle Scholar
Rowden, G, Phillips, TM, Lewis, MG. Ia antigens on indeterminate cells of the epidermis: immunoelectron microscopic studies of surface antigens. Br J Dermatol 1979; 100: 531–42.CrossRefGoogle Scholar
O’Malley, DP, Agrawal, R, Grimm, KE, et al. Evidence of BRAF V600E in indeterminate cell tumor and interdigitating dendritic cell sarcoma. Ann Diagn Pathol 2015; 19: 113–16.CrossRefGoogle ScholarPubMed
Chan, JK, Fletcher, CD, Nayler, SJ, Cooper, K. Follicular dendritic cell sarcoma: clinicopathologic analysis of 17 cases suggesting a malignant potential higher than currently recognized. Cancer 1997; 79: 294313.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Dainese, E, Cimetti, L, Pozzi, B, et al. Primary cutaneous interdigitating dendritic cell sarcoma (IDCS): report of a new case and literature review. Pathol Res Pract 2023; 247: 154559. doi: 10.1016/j.prp.2023.154559.CrossRefGoogle ScholarPubMed
Horny, HP, Sillaber, C, Menke, D, et al. Diagnostic value of immunostaining for tryptase in patients with mastocytosis. Am J Surg Pathol 1998; 22: 1132–40.CrossRefGoogle ScholarPubMed
Hollman, TJ, Brenn, T, Hornick, JL. CD25 expression on cutaneous mast cells from adult patients presenting with urticaria pigmentosa is predictive of systemic mastocytosis. Am J Surg Pathol 2008; 32: 139–45.CrossRefGoogle Scholar
Soilleux, EJ, Bowling, J, Hollowood, K. CD4 expression by mast cells in mastocytosis: a case report. J Clin Pathol 2009; 62: 564–6.CrossRefGoogle ScholarPubMed
Sotlar, K, Cerny-Reiterer, S, Petat-Dutter, K, et al. Aberrant expression of CD30 in neoplastic mast cells in high-grade mastocytosis. Mod Pathol 2011; 24: 585–95.CrossRefGoogle ScholarPubMed
Parsi, M, Go, MS, Ahmed, A. Leukemia cutis. StatPearls 2023 PMID: 31082180.Google ScholarPubMed
Stolzel, F, Luer, T, Lock, S, et al. The prevalence of extramedullary acute myeloid leukemia detected by 18FDG-PET/CT: final results from the prospective PETAML trial. Haematologica 2020; 105: 1552–8.CrossRefGoogle Scholar
Bakst, RL, Stallman, MS, Douer, D, Yahalom, J. How I treat extramedullary acute myeloid leukemia. Blood 2011; 118: 3785–93.CrossRefGoogle Scholar
Hurley, MY, Ghahramani, GK, Frisch, S, et al. Cutaneous myeloid sarcoma: natural history and biology of an uncommon manifestation of acute myeloid leukemia. Acta Derm Venereol 2013; 93: 319–24.CrossRefGoogle ScholarPubMed
Wilson, CS, Medeiros, LJ. Extramedullary manifestations of myeloid neoplasms. Am J Clin Pathol 2015; 144: 219–39.CrossRefGoogle ScholarPubMed
Pileri, SA, Ascani, S, Cox, MC, et al. Myeloid sarcoma: clinicopathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia 2007; 21: 340–50.CrossRefGoogle ScholarPubMed
Falini, B, Lenze, D, Hasserjian, R, et al. Cytoplasmic mutated nucleophosmin (NPM) defines the molecular status of a significant fraction of myeloid sarcomas. Leukemia 2007; 21: 1566–70.CrossRefGoogle ScholarPubMed
Zhou, J, Bell, D, Medeiros, LJ. Myeloid sarcoma of the head and neck region. Arch Pathol Lab Med 2013; 137: 1560–8.CrossRefGoogle ScholarPubMed
Sangle, NA, Schmidt, RL, Patel, JL, et al. Optimized immunohistochemical panel to differentiate myeloid sarcoma from blastic plasmacytoid dendritic cell neoplasm. Mod Pathol 2014; 27: 1137–43.CrossRefGoogle ScholarPubMed
Kaur, V, Swami, A, Alapat, D, et al. Clinical characteristics, molecular profile and outcomes of myeloid sarcoma: a single institution experience over 13 years. Hematology 2018; 23: 1724.CrossRefGoogle ScholarPubMed
Sukswai, N, Aung, PP, Yin, CC, et al. Dual expression of TCF4 and CD123 is highly sensitive and specific for blastic plasmacytoid dendritic cell neoplasm. Am J Surg Pathol 2019; 43: 1429–37.CrossRefGoogle ScholarPubMed
Cronin, DM, George, TI, Sundram, UN. An updated approach to the diagnosis of myeloid leukemia cutis. Am J Clin Pathol 2009; 132: 101–10.CrossRefGoogle Scholar
Lee, WJ, Moon, HR, Won, CH, et al. Precursor B- or T-lymphoblastic lymphoma presenting with cutaneous involvement: a series of 13 cases including 7 cases of cutaneous T-lymphoblastic lymphoma. J Am Acad Dermatol 2014; 70: 318–25.CrossRefGoogle ScholarPubMed
Boccara, O, Laloum-Grynberg, E, Jeudy, G, et al. Cutaneous B-cell lymphoblastic lymphoma in children: a rare diagnosis. J Am Acad Dermatol 2012; 66: 51–7.CrossRefGoogle ScholarPubMed
Schmitt, IM, Manente, L, Di Matteo, A, Felici, F, Giangiacomi, M, Chimenti, S. Lymphoblatic lymphoma of the pre-B phenotype with cutaneous presentation. Dermatology 1997; 195: 289–92.CrossRefGoogle Scholar
Wright, D, McKeever, P, Carter, R. Childhood non-Hodgkin lymphomas in the United Kingdom: findings from the UK Children’s Cancer Study Group. J Clin Pathol 1997; 50: 128–34.CrossRefGoogle ScholarPubMed
Alaggio, R, Wood, BL, Akkari, Y, et al. B-lymphoblastic leukaemis/lymphomas. Introduction. In: WHO Classification of Tumours Editorial Board. Haematolymphoid tumours [Internet; beta version ahead of print]. Lyon (France): International Agency for Research on Cancer; 2022. (WHO classification of tumours series, 5th ed.; vol. 11).Google Scholar
Shafer, D, Wu, H, Al-Saleem, T, et al. Cutaneous precursor B-cell lymphoblastic lymphoma in 2 adult patients: clinicopathologic and molecular cytogenetic studies with a review of the literature. Arch Dermatol 2008; 144: 1155–62.CrossRefGoogle ScholarPubMed
Ozdemirli, M, Fanburg-Smith, JC. Hartmann, DP, et al. Precursor B-Lymphoblastic lymphoma presenting as a solitary bone tumor and mimicking Ewing’s sarcoma: a report of four cases and review of the literature. Am J Surg Pathol 1998; 22: 795804.CrossRefGoogle ScholarPubMed
Maitra, A, McKenna, RW, Weinberg, AG, Schneider, NR, Kroft, SH. Precursor B-cell lymphoblastic lymphoma: a study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol 2001; 115: 868–75. PMID: 11392884CrossRefGoogle ScholarPubMed
Millot, F, Robert, A, Bertrand, Y, et al. Cutaneous involvement in children with acute lymphoblastic leukemia or lymphoblastic lymphoma. The Children’s Leukemia Cooperative Group of the European Organization of Research and Treatment of Cancer (EORTC). Pediatrics 1997; 100: 60–4.CrossRefGoogle ScholarPubMed
Patel, JL, Smith, LM, Anderson, J, et al. The immunophenotype of T-lymphoblastic lymphoma in children and adolescents: a Children’s Oncology Group report. Br J Haematol 2012; 159: 454–61. doi: 10.1111/bjh.12042.CrossRefGoogle ScholarPubMed
Muljono, A, Graf, NS, Arbuckle, S. Primary cutaneous lymphoblastic lymphoma in children: a series of eight cases with review of the literature. Pathology 2009; 41: 223–8.CrossRefGoogle ScholarPubMed
Pilozzi, E, Muller-Hermelink, HK, Falini, B, et al. Gene rearrangements in T-cell lymphoblastic lymphoma. J Pathol 1999; 188: 267–70.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Szczepański, T 1, Pongers-Willemse, M J, Langerak, A W, et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood 1999; 93: 4079–85.CrossRefGoogle ScholarPubMed
Bonifazi, E, Caputo, R, Ceci, A, Meneghini, C. Congenital self-healing histiocytosis. Clinical, histologic, and ulstrastructural study. Arch Dermatol 1982; 118: 267–72.CrossRefGoogle Scholar
Hashimoto, K, Takahashi, S, Lee, RG, Krull, EA. Congenital self-healing reticulohistiocytosis. Report of the seventh case with histochemical and ultrastructural studies. J Am Acad Dermatol 1984; 11: 447–54.CrossRefGoogle ScholarPubMed
Melo, J, Catovsky, D, Galton, DAG. The relationship between chronic lymphocytic leukaemia and prolymphocytic leukaemia. I. Clinical and laboratory features of 300 patients and characterization of an intermediate group. Br J Haematol 1986; 63: 377–87.CrossRefGoogle ScholarPubMed
Menter, T, Dirnhofer, S, Tzankov, A. LEF1: a highly specific marker for the diagnosis of chronic lymphocytic B cell leukaemia/small lymphocytic B cell lymphoma. J Clin Pathol 2015; 68: 473–8.CrossRefGoogle ScholarPubMed
Hartmann, K, Escribano, L, Grattan, C, et al. Cutaneous manifestations in patients with mastocytosis: Consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthmas & Immunology; and the European Academy of Allergology and Clinical Immunology. J Allergy Clin Immunol 2016; 137: 3545.CrossRefGoogle ScholarPubMed
Severino, M, Chandesris, MO, Barete, S, et al. Telangiectasis macularis eruptiva perstans (TMEP): a form of cutaneous mastocytosis with potential systemic involvement. J Am Acad Dermatol 2016; 74: 885–91.CrossRefGoogle ScholarPubMed
Antonescu, CR. Emerging soft tissue tumors with kinase fusions: an overview of the recent literature with an emphasis on diagnostic criteria. Genes Chromosomes Cancer 2020; 59: 437–44.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×