Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-sbgtn Total loading time: 0 Render date: 2025-06-18T21:01:00.167Z Has data issue: false hasContentIssue false

Chapter 8 - Soft Tissue Neoplasms

Published online by Cambridge University Press:  17 June 2025

Mai P. Hoang
Affiliation:
Harvard Medical School, Boston
Get access

Summary

Pathologists often encounter soft tissue neoplasms while examining biopsies and excisions from the skin. Soft tissue neoplasms are classified along their line of differentiation and include fibroblastic, myofibroblastic and fibrohistiocytic tumors, smooth muscle tumors, skeletal muscle tumors, neural tumors, lipomatous tumors, vascular tumors, pericytic and perivascular tumors and tumors of uncertain differentiation. These tumors can be categorized as benign, intermediate (locally recurrent/aggressive), intermediate (rarely metastasizing) and malignant (locally recurrent/aggressive with significant metastatic potential). Histologic diagnosis, grading and staging is imperative for prognostication and treatment. The continually expanding array of molecular diagnostics techniques has identified numerous novel gene alterations in soft tissue neoplasms that has enabled identification of new diagnostic entities with accompanying diagnostic and surrogate immunohistochemical markers. In this chapter we will review many soft tissue neoplasms and highlight important immunohistochemical markers.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Guillou, L, Coindre, JM, Bonichon, F, et al. Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J Clin Oncol 1997; 15: 350–62.CrossRefGoogle Scholar
Amin, MB, Edge, SB, Greene, FL, et al., eds. AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2017.Google ScholarPubMed
Doyle, LA, Mariño-Enriquez, A, Fletcher, CD, Hornick, JL. ALK rearrangement and overexpression in epithelioid fibrous histiocytoma. Mod Pathol 2015; 28: 904–12.CrossRefGoogle ScholarPubMed
Michal, M, Berry, RS, Rubin, BP, et al. EWSR1-SMAD3-rearranged fibroblastic tumor: an emerging entity in an increasingly more complex group of fibroblastic/myofibroblastic neoplasms. Am J Surg Pathol 2018; 42: 1325–33.CrossRefGoogle Scholar
Agaram, NP, Zhang, L, Sung, YS, et al. Recurrent NTRK1 gene fusions define a novel subset of locally aggressive lipofibromatosis-like neural tumors. Am J Surg Pathol 2016; 40: 1407–16.CrossRefGoogle ScholarPubMed
Calonje, E, Mentzel, T, Fletcher, CD. Cellular benign fibrous histiocytoma. Clinicopathologic analysis of 74 cases of a distinctive variant of cutaneous fibrous histiocytoma with frequent recurrence. Am J Surg Pathol 1994; 18: 668–76.CrossRefGoogle ScholarPubMed
Gleason, BC, Fletcher, CD. Deep “benign” fibrous histiocytoma: clinicopathologic analysis of 69 cases of a rare tumor indicating occasional metastatic potential. Am J Surg Pathol 2008; 32: 354–62.CrossRefGoogle ScholarPubMed
Calonje, E, Fletcher, CD. Aneurysmal benign fibrous histiocytoma: clinicopathological analysis of 40 cases of a tumour frequently misdiagnosed as a vascular neoplasm. Histopathology 1995; 26: 323–31.CrossRefGoogle ScholarPubMed
Kaddu, S, McMenamin, ME, Fletcher, CD. Atypical fibrous histiocytoma of the skin: clinicopathologic analysis of 59 cases with evidence of infrequent metastasis. Am J Surg Pathol 2002; 26: 3546.CrossRefGoogle ScholarPubMed
Sachdev, R, Sundram, U. Expression of CD163 in dermatofibroma, cellular fibrous histiocytoma, and dermatofibrosarcoma protuberans: comparison with CD68, CD34 and factor 13a. J Cutan Pathol 2006; 33: 353–60.CrossRefGoogle Scholar
Thway, K, Noujaim, J, Jones, RL, Fisher, C. Dermatofibrosarcoma protuberans: pathology, genetics, and potential therapeutic strategies. Ann Diagn Pathol 2016; 25: 6471.CrossRefGoogle ScholarPubMed
Volpicelli, ER, Fletcher, CD. Desmin and CD34 positivity in cellular fibrous histiocytoma: an immunohistochemical analysis of 100 cases. J Cutan Pathol 2012; 39: 747–52.CrossRefGoogle ScholarPubMed
Miller, K, Goodlad, JR, Brenn, T. Pleomorphic dermal sarcoma: adverse histologic features predict aggressive behavior and allow distinction from atypical fibroxanthoma. Am J Surg Pathol 2012; 36: 1317–26.CrossRefGoogle ScholarPubMed
de Feraudy, S, Mar, N, McCalmont, TH. Evaluation of CD10 and procollagen 1 expression in atypical fibroxanthoma and dermatofibroma. Am J Surg Pathol 2008; 32: 1111–22.CrossRefGoogle ScholarPubMed
Rudolph, P, Schubert, C, Zelger, BG, et al. Different expression of CD34 and Ki-M1p in pleomorphic fibroma and dermatofibroma with monster cells. Am J Dermatopathol 1999; 21: 414–19.CrossRefGoogle ScholarPubMed
Puig, L, Fernandez Figueras, MT, Bielsa, I, et al. Multinucleate cell angiohistiocytoma: a fibrohistiocytic proliferation with increased mast cell numbers and vascular hyperplasia. J Cutan Pathol 2002; 29: 232–7.Google ScholarPubMed
Choi, KY, Mack, L, Caragea, M, et al. MDM2 analysis in the management of benign lipomas versus atypical lipomatous tumors/well-differentiated liposarcomas: a useful prognostication tool? Am J Surg 2022; 224: 747–50.CrossRefGoogle ScholarPubMed
Hinds, B, Agulló Pérez, AD, LeBoit, PE, McCalmont, TH, North, JP. Loss of retinoblastoma in pleomorphic fibroma: an immunohistochemical and genomic analysis. J Cutan Pathol 2017; 44: 665–71.CrossRefGoogle ScholarPubMed
Hanft, VN, Shea, CR, McNutt, NS, et al. Expression of CD34 in sclerotic (“plywood’) fibromas. Am J Dermatopathol 2000; 22: 1721.CrossRefGoogle ScholarPubMed
Hartsough, E, DeSimone, MS, Lorenzo, ME, et al. Utilizing PTEN immunohistochemistry as a screening test for Cowden syndrome. Am J Clin Pathol 2024; Jan 11:aqad177. doi: 10.1093/ajcp/aqad177.CrossRefGoogle Scholar
Nielsen, GP, O’Connell, JX, Dickersin, GR, Rosenberg, AE. Collagenous fibroma (desmoplastic fibroblastoma): a report of seven cases. Mod Pathol 1996; 9: 781–5.Google ScholarPubMed
Kato, I, Yoshida, A, Ikegami, M, et al. FOSL1 immunohistochemistry clarifies the distinction between desmoplastic fibroblastoma and fibroma of tendon sheath. Histopathology 2016; 69: 1012–20.CrossRefGoogle ScholarPubMed
Kutzner, H, Mentzel, T, Palmedo, G, et al. Plaque-like CD34-positive dermal fibroma (“medalion-like dermal dendrocyte hamartoma”): clinicopathologic, immunohistochemical, and molecular analysis of 5 cases emphasizing its distinction from superficial, plaque-like dermatofibrosarcoma protuberans. Am J Surg Pathol 2010; 34: 190201.CrossRefGoogle ScholarPubMed
De Feraudy, S, Fletcher, CDM. Fibroblastic connective tissue nevus: a rare cutaneous lesion analyzed in a series of 25 cases. Am J Surg Pathol 2012; 36: 1509–15.CrossRefGoogle Scholar
Carter, JM, Weiss, SW, Linos, K, DiCaudo, DJ, Folpe, AL. Superficial CD34-positive fibroblastic tumor: report of 18 cases of a distinctive low-grade mesenchymal neoplasm of intermediate (borderline) malignancy. Mod Pathol 2014; 27: 294302.CrossRefGoogle ScholarPubMed
Perret, R, Michal, M, Carr, RA, et al. Superficial CD34-positive fibroblastic tumor and PRDM10-rearranged soft tissue tumor are overlapping entities: a comprehensive study of 20 cases. Histopathology 2021; 79: 810–25.CrossRefGoogle ScholarPubMed
De Feraudy, S, Fletcher, CDM. Fibroblastic connective tissue nevus: a rare cutaneous lesion analyzed in a series of 25 cases. Am J Surg Pathol 2012; 36: 1509–15.CrossRefGoogle Scholar
Kamath, NV, Ormsby, A, Bergfeld, WF, House, NS. A light microscopic and immunohistochemical evaluation of scars. J Cutan Pathol 2002; 29: 2732.CrossRefGoogle ScholarPubMed
Erdag, G, Qureshi, HS, Patterson, JW, Wick, MR. Solitary fibrous tumors of the skin: a clinicopathologic study of 10 cases and review of the literature. J Cutan Pathol 2007; 34: 844–50.CrossRefGoogle ScholarPubMed
Tariq, MU, Din, NU, Abdul-Ghafar, J, Park, YK. The many faces of solitary fibrous tumor; diversity of histological features, differential diagnosis and role of molecular studies and surrogate markers in avoiding misdiagnosis and predicting the behavior. Diagn Pathol 2021; 16: 32. doi: 10.1186/s13000-021-01095-2.CrossRefGoogle ScholarPubMed
Doyle, LA, Vivero, M, Fletcher, CD, et al. Nuclear expression of STAT6 distinguishes solitary fibrous tumor from histologic mimics. Mod Pathol 2014; 27: 290–5.CrossRefGoogle ScholarPubMed
Frew, JW. Multinucleate cell angiohistiocytoma: clinicopathological correlation of 142 cases with insights into etiology and pathogenesis. Am J Dermatopathol 2015; 37: 222–8.CrossRefGoogle ScholarPubMed
Cesinaro, AM, Roncati, L, Maiorana, A. Estrogen receptor alpha overexpression in multinucleate cell angiohistiocytoma: new insights into the pathogenesis of a reactive process. Am J Dermatopathol 2010; 32: 655–9.CrossRefGoogle ScholarPubMed
Saab, ST, McClain, CM, Coffin, CM. Fibrous hamartoma of infancy: a clinicopathologic analysis of 60 cases. Am J Surg Pathol 2014; 38: 394401.CrossRefGoogle ScholarPubMed
Fetsch, JF, Miettinen, M. Calcifying aponeurotic fibroma: a clinicopathologic study of 22 cases arising in uncommon sites. Hum Pathol 1998; 29: 1504–10.CrossRefGoogle ScholarPubMed
Puls, F, Hofvander, J, Magnusson, L, et al. FN1-EGF gene fusions are recurrent in calcifying aponeurotic fibroma. J Pathol 2016; 238: 502–7.CrossRefGoogle ScholarPubMed
Sugita, S, Takenami, T, Kido, T, et al. Diagnostic utility of CSF1 immunohistochemistry in tenosynovial giant cell tumor for differentiating from giant cell-rich tumors and tumor-like lesions of bone and soft tissue. Diagn Pathol 2022; 17: 88. doi: 10.1186/s13000-022-01266-9.CrossRefGoogle ScholarPubMed
Stacchiotti, S, Dürr, HR, Schaefer, IM, et al. Best clinical management of tenosynovial giant cell tumour (TGCT): a consensus paper from the community of experts. Cancer Treat Rev 2023; 112: 102491. doi: 10.1016/j.ctrv.2022.102491.CrossRefGoogle ScholarPubMed
Monaghan, H, Salter, DM, Al-Nafussi, A. Giant cell tumour of tendon sheath (localised nodular tenosynovitis): clinicopathological features of 71 cases. J Clin Pathol 2001; 54: 404–7.CrossRefGoogle ScholarPubMed
Lee, JC, Liang, CW, Fletcher, CD. Giant cell tumor of soft tissue is genetically distinct from its bone counterpart. Mod Pathol 2017; 30: 728–33.CrossRefGoogle ScholarPubMed
Hoang, MP, Rogers, BB, Albores Saavedra, J. Giant cell tumor of the skin: a morphologic and immunohistochemical study of five cases. Ann Diagn Pathol 2002; 6: 288–93.CrossRefGoogle ScholarPubMed
Amary, MF, Pauwels, P, Meulemans, E, et al. Detection of beta-catenin mutations in paraffin-embedded sporadic desmoid-type fibromatosis by mutation-specific restriction enzyme digestion (MSRED): an ancillary diagnostic tool. Am J Surg Pathol 2007; 31: 1299–309.CrossRefGoogle ScholarPubMed
An, J, Woo, HY, Lee, Y, et al. Clinicopathological features of 70 desmoid-type fibromatoses confirmed by β-catenin immunohistochemical staining and CTNNB1 mutation analysis. PLoS One 2021; 16: e0250619. doi: 10.1371/journal.pone.0250619.CrossRefGoogle ScholarPubMed
Bhattacharya, B, Dilworth, HP, Iacobuzio-Donahue, C, et al. Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol 2005; 29: 653–9.CrossRefGoogle ScholarPubMed
Montgomery, E, Lee, JH, Abraham, SC, Wu, TT. Superficial fibromatoses are genetically distinct from deep fibromatoses. Mod Pathol 2001; 14: 695701.CrossRefGoogle ScholarPubMed
Laskin, WB, Miettinen, M, Fetsch, JF. Infantile digital fibroma/fibromatosis: a clinicopathological and immunohistochemical study of 69 tumors from 57 patients with long-term follow-up. Am J Surg Pathol 2009; 33: 13.CrossRefGoogle ScholarPubMed
Erickson-Johnson, MR, Chou, MM, Evers, BR, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest 2011; 91: 1427–33.CrossRefGoogle ScholarPubMed
Arbiser, ZK, Folpe, AL, Weiss, SW. Consultative (expert) second opinions in soft tissue pathology. Analysis of problem-prone diagnostic situations. Am J Clin Pathol 2001; 116: 473–6.CrossRefGoogle ScholarPubMed
Wong, NL, Di, F. Pseudosarcomatous fasciitis and myositis: diagnosis by fine-needle aspiration cytology. Am J Clin Pathol 2009; 132: 857–65.CrossRefGoogle ScholarPubMed
el-Jabbour, JN, Bennett, MH, Burke, MM, et al. Proliferative myositis: an immunohistochemical and ultrastructural study. Am J Surg Pathol 1991; 15: 654–9.CrossRefGoogle ScholarPubMed
Makise, N, Mori, T, Motoi, T, et al. Recurrent FOS rearrangement in proliferative fasciitis/proliferative myositis. Mod Pathol 2021; 34, 942–50.CrossRefGoogle ScholarPubMed
Antonescu, CR, Suurmeijer, AJ, Zhang, L, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015; 39: 957–67.CrossRefGoogle ScholarPubMed
Yamamoto, H, Yoshida, A, Taguchi, K, et al. ALK, ROS1 and NTRK3 gene rearrangements in inflammatory myofibroblastic tumors. Histopathology 2016; 69: 7283.CrossRefGoogle Scholar
Deshpande, V, Zen, Y, Chan, J, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol 2012; 25: 1181–92.CrossRefGoogle ScholarPubMed
Suster, D, Michal, M, Huang, H, et al. Myxoinflammatory fibroblastic sarcoma: an immunohistochemical and molecular genetic study of 73 cases. Mod Pathol 2020; 33: 2520–33.CrossRefGoogle ScholarPubMed
Laskin, WB, Fetsch, JF, Miettinen, M. Myxoinflammatory fibroblastic sarcoma: a clinicopathologic analysis of 104 cases, with emphasis on predictors of outcome. Am J Surg Pathol 2014; 38: 112.CrossRefGoogle ScholarPubMed
Kovarik, CL, Barrett, T, Auerbach, A, Cassarino, DS. Acral myxoinflammatory sarcoma: case series and immunohistochemical analysis. J Cutan Pathol 2008; 35: 192–6.CrossRefGoogle ScholarPubMed
Hollmann, TJ, Bovee, JVMG, Fletcher, CDM. Digital fibromyxoma (superficial acral fibromyxoma): a detailed characterization of 124 cases. Am J Surg Pathol 2012; 36: 789–98.CrossRefGoogle ScholarPubMed
Agaimy, A, Michal, M, Giedl, J, et al. Superficial acral fibromyxoma: clinicopathological, immunohistochemical, and molecular study of 11 cases highlighting frequent Rb1 loss/deletions. Hum Pathol 2017; 60: 192–8.CrossRefGoogle ScholarPubMed
Doyle, LA, Moller, E, Dal Cin, P, et al. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol 2011; 35: 733–41.CrossRefGoogle ScholarPubMed
Möller, E, Hornick, JL, Magnusson, L, et al. FUS-CREB3L2/L1-Positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1. Clin Cancer Res 2011; 17: 2646–56.CrossRefGoogle ScholarPubMed
Trinidad, CM, Wangsiricharoen, S, Prieto, VG, Aung, PP. Rare variants of dermatofibrosarcoma protuberans: clinical, histologic, and molecular features and diagnostic pitfalls. Dermatopathology 2023; 10: 5462.CrossRefGoogle ScholarPubMed
Segura, S, Salgado, R, Toll, A, et al. Identification of t(17;22)(q22q13)(COL1A1/PDGFB) in dermatofibrosarcoma protuberans by fluorescence in situ hybridization in paraffin-embedded tissue microarrays. Hum Pathol 2011; 42: 176–84.CrossRefGoogle Scholar
Jha, P, Moosavi, C, Fanburg-Smith, JC. Giant cell fibroblastoma: an update and addition of 86 new cases from the Armed Forces Institute of Pathology, in honor of Dr. Franz M. Enzinger. Ann Diagn Pathol 2007; 11: 81–8.CrossRefGoogle Scholar
Moosavi, C, Jha, P, Fanburg-Smith, JC. An update on plexiform fibrohistiocytic tumor and addition of 66 new cases from the Armed Forces Institute of Pathology, in honor of Frank M. Enzinger, MD. Ann Diagn Pathol 2007; 11: 313–19.CrossRefGoogle Scholar
Fetsch, JF, Miettinen, M, Laskin, WB, et al. A clinicopathologic study of 45 pediatric soft tissue tumors with an admixture of adipose tissue and fibroblastic elements, and a proposal for classification as lipofibromatosis. Am J Surg Pathol 2000; 24: 1491–500.CrossRefGoogle Scholar
Mentzel, T, Heinz, K. Dermatomyofibroma: clinicopathologic and immunohistochemical analysis of 56 cases and reappraisal of a rare and distinct cutaneous neoplasm. Am J Dermatopathol 2009; 31: 44–9.CrossRefGoogle ScholarPubMed
Mariño-Enríquez, A, Fletcher, CD. Angiofibroma of soft tissue: clinicopathologic characterization of a distinctive benign fibrovascular neoplasm in a series of 37 cases. Am J Surg Pathol 2012; 36: 500–8.CrossRefGoogle Scholar
Jin, Y, Möller, E, Nord, KH, Mandahl, N, et al. Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes. Genes Chromosomes Cancer 2012; 51: 510–20.CrossRefGoogle Scholar
Flucke, U, van Krieken, JH, Mentzel, T. Cellular angiofibroma: analysis of 25 cases emphasizing its relationship to spindle cell lipoma and mammary type myofibroblastoma. Mod Pathol 2011; 24: 82–9.CrossRefGoogle ScholarPubMed
Chen, E, Fletcher, CD. Cellular angiofibroma with atypical or sarcomatous transformation: clinicopathologic analysis of 13 cases. Am J Surg Pathol 2010; 34: 707–14.CrossRefGoogle ScholarPubMed
Iwasa, Y, Fletcher, CD. Cellular angiofibroma: clinicopathologic and immunohistochemical analysis of 51 cases. Am J Surg Pathol 2004; 28: 1426–35.CrossRefGoogle ScholarPubMed
Laskin, WB, Fetsch, JF, Mostofi, FK. Angiomyofibroblastomalike tumor of the male genital tract: analysis of 11 cases with comparison to female angiomyofibroblastoma and spindle cell lipoma. Am J Surg Pathol 1998; 22: 616.CrossRefGoogle ScholarPubMed
Laskin, WB, Fetsch, JF, Tavassoli, FA. Angiofibroblastoma of the female genital tract: analysis of 17 cases including a lipomatous variant. Hum Pathol 1997; 28: 1046–55.CrossRefGoogle Scholar
Nielsen, GP, Rosenberg, AF, Young, RH, et al. Angiomyofibroblastoma of the vulva and vagina. Mod Pathol 1996; 9: 284–91.Google ScholarPubMed
Qiu, X, Montgomery, E, Sun, B. Inflammatory myofibroblastic tumor and low-grade myofibroblastic sarcoma: a comparative study of clinicopathologic features and further observations on the immunohistochemical profile of myofibroblasts. Hum Pathol 2008; 39: 846–56.CrossRefGoogle ScholarPubMed
Carlson, JW, Fletcher, CD. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology 2007; 51: 509–14.CrossRefGoogle ScholarPubMed
Mentzel, T, Calonje, E, Wadden, C, et al. Myxofibrosarcoma: clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol 1996; 20: 391405.CrossRefGoogle ScholarPubMed
Smith, SC, Poznanski, AA, Fullen, DR, et al. CD34-positive superficial myxofibrosarcoma: a potential diagnostic pitfall. J Cutan Pathol 2013; 40: 639–45.CrossRefGoogle ScholarPubMed
Miettinen, M. Immunohistochemistry of soft tissue tumours: review with emphasis on 10 markers. Histopathology 2014; 64: 101–18.CrossRefGoogle ScholarPubMed
Malik, K, Patel, P, Chen, J, Khachemoune, A. Leiomyoma cutis: a focused review on presentation, management, and association with malignancy. Am J Clin Dermatol 2015; 16: 3546.CrossRefGoogle Scholar
Chaudhary, KS, Shousha, S. Leiomyoma of the nipple, and normal subareola muscle fibers, are oestrogen and progesterone receptor positive. Histopathology 2004; 44: 626–8.CrossRefGoogle Scholar
Buelow, B, Cohen, J, Nagymanyoki, Z, et al. Immunohistochemistry for 2-Succinocysteine (2SC) and Fumarate Hydratase (FH) in cutaneous leiomyomas may aid in identification of patients with HLRCC (Hereditary Leiomyomatosis and Renal Cell Carcinoma Syndrome). Am J Surg Pathol 2016; 40: 982–8.CrossRefGoogle ScholarPubMed
Kraft, S, Fletcher, CD. Atypical intradermal smooth muscle neoplasms: clinicopathologic analysis of 84 cases and a reappraisal of cutaneous “leiomyosarcoma.Am J Surg Pathol 2011; 35: 599607.CrossRefGoogle Scholar
Pitjadi, TM, Grayson, W. Epstein-Barr virus-associated smooth muscle tumour: a case series with a significant proportion of tumours showing proclivity for cutaneous soft tissues. Dermatopathology 2019; 6: 133–46. doi: 10.1159/000497075.CrossRefGoogle ScholarPubMed
Yadav, SK, Sood, N. Multinodular adult rhabdomyoma in female: a rare case report. J Oral Maxillofac Pathol 2019; 23: 54–7.Google ScholarPubMed
Kapadia, SB, Meis, JM, Frisman, DM, Ellis, GL, Heffner, DK. Fetal rhabdomyoma of the head and neck: a clinicopathologic and immunophenotypic study of 24 cases. Hum Pathol 1993; 24: 754–65.Google ScholarPubMed
Schoolmeester, JK, Xing, D, Keeney, GL, Sukov, WR. Genital rhabdomyoma of the lower female genital tract: a study of 12 cases with molecular cytogenetic findings. Int J Gynecol Pathol 2018; 37: 349–55.CrossRefGoogle ScholarPubMed
Skapek, SX, Ferrari, A, Gupta, AA, et al. Rhabdomyosarcoma. Nat Rev Dis Primers 2019; 5: 1. doi: 10.1038/s41572-018-0051-2.CrossRefGoogle ScholarPubMed
Tsokos, M, Linnoila, RI, Chandra, RS, Triche, TJ. Neuron specific enolase in the diagnosis of neuroblastoma and other small round cell tumors in children. Hum Pathol 1984; 15: 575–84.CrossRefGoogle ScholarPubMed
Agaram, NP, LaQuaglia, MP, Alaggio, R, et al. MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification. Mod Pathol 2019; 32: 2736.CrossRefGoogle Scholar
Alaggio, R, Zhang, L, Sung, YS, et al. A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: identification of novel and recurrent VGLL2-related fusions in infantile cases. Am J Surg Pathol 2016; 40: 224–35.CrossRefGoogle ScholarPubMed
Prieto-Granada, CN, Wiesner, T, Messina, JL, et al. Loss of H3K27me3 expression is a highly sensitive marker for sporadic and radiation-induced MPNST. Am J Surg Pathol 2016; 40: 479–89.CrossRefGoogle ScholarPubMed
Fetsch, JF, Laskin, WB, Miettinen, M. Nerve sheath myxoma: a clinicopathologic and immunohistochemical analysis of 57 morphologically distinctive, S100 protein- and GFAP-positive, myxoid peripheral nerve sheath tumors with a predilection for the extremities and a high local recurrence rate. Am J Surg Pathol 2005; 29: 1615–24.CrossRefGoogle Scholar
Miettinen, M, McCue, PA, Sarlomo-Rikala, M, et al. Sox10–a marker for not only Schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol 2015; 39: 826–35.CrossRefGoogle ScholarPubMed
Koutlas, IG, Scheithauer, BW. Palisaded encapsulated (“solitary circumscribed”) neuroma of the oral cavity: a review of 55 cases. Head Neck Pathol 2010; 4: 1526.CrossRefGoogle ScholarPubMed
Higham, CS, Dombi, E, Rogiers, A, et al. The characteristics of 76 atypical neurofibromas as precursors to neurofibromatosis 1 associated malignant peripheral nerve sheath tumors. Neuro Oncol 2018; 20: 818–25.CrossRefGoogle ScholarPubMed
Johnson, MD, Glick, AD, Davis, BW. Immunohistochemical evaluation of Leu-7, myelin basic protein, S-100 protein, glial-fibrillary acidic-protein, and LN3 immunoreactivity in nerve sheath tumors and sarcomas. Arch Pathol Lab Med 1988; 112: 155–60.Google ScholarPubMed
Hirose, T, Tani, T, Shimada, T, et al. Immunohistochemical demonstration of EMA/Glut-1-positive perineurial cells and CD34 positive fibroblastic cells in peripheral nerve sheath tumors. Mod Pathol 2003; 16: 293–8.CrossRefGoogle Scholar
Fine, SW, McClain, SA, Li, M. Immunohistochemical staining for calretinin is useful for differentiating schwannomas from neurofibromas. Am J Clin Pathol 2004; 122: 552–9.CrossRefGoogle ScholarPubMed
Boyd, C, Smith, MJ, Kluwe, L, et al. Alterations in the SMARCB1 (INI1) tumor suppressor gene in familial Schwannomatosis. Clin Genet 2008; 74: 358–66.CrossRefGoogle ScholarPubMed
Theaker, JM, Gatter, KC, Puddle, J. Epithelial membrane antigen expression by the perineurium of peripheral nerve and in peripheral nerve tumours. Histopathology 1998; 13: 171–9.Google Scholar
Hornick, JL, Fletcher, CD. Soft tissue perineurioma: clinicopathologic analysis of 81 cases including those with atypical histologic features. Am J Surg Pathol 2005; 29: 845–58.CrossRefGoogle ScholarPubMed
Folpe, AF, Billings, SD, McKenney, JF, et al. Expression of claudin-1, a recently described tight junction perineurioma from potential mimics. Am J Surg Pathol 2002; 26: 1620–6.CrossRefGoogle ScholarPubMed
Yamaguchi, LI, Hasegawa, T, Hirose, T, et al. Sclerosing perineurioma: a clinicopathologic study of five cases and diagnostic utility of immunohistochemical staining for GLUT1. Virchows Arch 2003; 443: 159–63.CrossRefGoogle ScholarPubMed
Dickson, BC, Antonescu, CR, Demicco, EG, et al. Hybrid schwannoma-perineurioma frequently harbors VGLL3 rearrangement. Mod Pathol 2021; 34: 1116–24.CrossRefGoogle ScholarPubMed
Harder, A, Wesemann, M, Hagel, C, et al. Hybrid neurofibroma/schwannoma is overrepresented among schwannomatosis and neurofibromatosis patients. Am J Surg Pathol 2012; 36: 702–9.CrossRefGoogle ScholarPubMed
Kacerovska, D, Michal, M, Kuroda, N, et al. Hybrid peripheral nerve sheath tumors, including a malignant variant in type 1 neurofibromatosis. Am J Dermatopathol 2013; 35: 641–9.CrossRefGoogle ScholarPubMed
Wallace, CA, Hallman, JR, Sangueza, OP. Primary cutaneous ganglioneuroma: a report of two cases and literature review. Am J Dermatopathol 2003; 25: 239–42.CrossRefGoogle ScholarPubMed
Reed, RJ. Neuromesenchyme: the concept of a neurocristic effector cell for dermal mesenchyme. Am J Dermatopathol 1983; 5: 385–95.CrossRefGoogle ScholarPubMed
López, DA, Silvers, DN, Helwig, EB. Cutaneous meningiomas: a clinicopathologic study. Cancer 1974; 34: 728–44.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Fox, MD, Billings, SD, Gleason, BC, et al. Cutaneous meningioma: a potential diagnostic pitfall in p63 positive cutaneous neoplasms. J Cutan Pathol 2013; 40: 891–5.CrossRefGoogle ScholarPubMed
Agaimy, A, Buslei, R, Coras, R, et al. Comparative study of soft tissue perineurioma and meningioma using a five-marker immunohistochemical panel. Histopathology 2014; 65: 6070.CrossRefGoogle ScholarPubMed
Lack, EE, Worsham, GF, Callihan, MD, et al. Granular cell tumor: a clinicopathologic study of 110 patients. J Surg Oncol 1980; 13: 301–16.CrossRefGoogle ScholarPubMed
Fanburg-Smith, JC, Meis-Kindblom, JM, Fante, R, et al. Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation. Am J Surg Pathol 1998; 22: 779–94.CrossRefGoogle ScholarPubMed
Le, BH, Boyer, PJ, Lewis, JE, et al. Granular cell tumors: immunohistochemical assessment of inhibin-alpha, protein gene product 9.5, S100 protein, CD68, and Ki-67 proliferation index with clinical correlation. Arch Pathol Lab Med 2004; 128: 771–5.CrossRefGoogle Scholar
Kapur, P, Rakheja, D, Balani, JP, et al. Phosphorylated histone 3, Ki-67, p21, fatty acid synthase, and cleaved caspase-3 expression in benign and atypical granular cell tumors. Arch Pathol Lab Med 2007; 131: 5764.CrossRefGoogle ScholarPubMed
Jo, VY, Fletcher, CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol 2015; 39: 673–82.CrossRefGoogle ScholarPubMed
Pekmezci, M, Reuss, DE, Hirbe, AC, et al. Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas. Mod Pathol 2015; 28: 187200.CrossRefGoogle ScholarPubMed
Schaefer, IM, Fletcher, CD, Hornick, JL. Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol 2016; 29: 413.CrossRefGoogle ScholarPubMed
Schaefer, IM, Dong, F, Garcia, EP, et al. Recurrent SMARCB1 inactivation in epithelioid malignant peripheral nerve sheath tumors. Am J Surg Pathol 2019; 43: 835–43.CrossRefGoogle ScholarPubMed
Torres-Mora, J, Dry, S, Li, X, et al. Malignant melanotic Schwannian tumor: a clinicopathologic, immunohistochemical, and gene expression profiling study of 40 cases, with a proposal for the reclassification of “melanotic Schwannoma.Am J Surg Pathol 2014; 38: 94105.CrossRefGoogle ScholarPubMed
Carney, JA. Psammomatous melanotic schwannoma: a distinctive, heritable tumor with special associations, including cardiac myxoma and the Cushing syndrome. Am J Surg Pathol 1990; 14: 206–22.CrossRefGoogle ScholarPubMed
Kim, KH, Kwon, SH, Sim, WY, Lew, BL. The study of relationship between anatomical sites and depth of the lipoma. Ann Dermatol 2021; 33: 562–7.CrossRefGoogle Scholar
Dreux, N, Marty, M, Chibon, F, et al. Value and limitation of immunohistochemical expression of HMGA2 in mesenchymal tumors: about a series of 1052 cases. Mod Pathol 2010; 23: 1657–66.CrossRefGoogle ScholarPubMed
Stojanov, IJ, Mariño-Enriquez, A, Bahri, N, et al. Lipomas of the oral cavity: utility of MDM2 and CDK4 in avoiding overdiagnosis as atypical lipomatous tumor. Head Neck Pathol 2019; 13: 169–76.CrossRefGoogle ScholarPubMed
Fletcher, CDM, Martin-Bates, E. Spindle-cell lipoma: a clinicopathological study with some original observations. Histopathology 1987; 11: 803–17.CrossRefGoogle ScholarPubMed
Maggiani, F, Debiec-Rychter, M, Vanbockrijck, M, et al. Cellular angiofibroma: another mesenchymal tumor with 13q14 involvement, suggesting a link with spindle cell lipoma and (extra)-mammary myofibroblastoma. Histopathology 2007; 51: 410–12.CrossRefGoogle ScholarPubMed
Suster, S, Fisher, C. Immunoreactivity for the human hematopoietic progenitor cell antigen (CD34) in lipomatous tumors. Am J Surg Pathol 1997; 21: 195200.CrossRefGoogle ScholarPubMed
Chen, BJ, Marino-Enriquez, A, Fletcher, CD, Hornick, JL. Loss of retinoblastoma protein expression in spindle cell/pleomorphic lipomas and cytogenetically related tumors: an immunohistochemical study with diagnostic implications. Am J Surg Pathol 2012; 36: 1119–28.CrossRefGoogle ScholarPubMed
Sirvent, N, Coindre, JM, Maire, G, et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol 2007; 31: 1476–89.CrossRefGoogle ScholarPubMed
Henricks, WH, Chu, YC, Goldblum, JR, Weiss, SW. Dedifferentiated liposarcoma: a clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation. Am J Surg Pathol 1997; 21: 271–81.CrossRefGoogle ScholarPubMed
Chai, H, Xu, F, DiAdamo, A, Grommisch, B, Mao, H, Li, P. Cytogenomic characterization of giant ring or rod marker chromosome in four cases of well-differentiated and dedifferentiated liposarcoma. Case Rep Genet 2022; 2022: 6341207. doi: 10.1155/2022/6341207.Google ScholarPubMed
Kilpatrick, SE, Doyon, J, Choong, PF, et al. The clinicopathologic spectrum of myxoid and round cell liposarcoma: a study of 95 cases. Cancer 1996; 77: 1450–8.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Scapa, JV, Cloutier, JM, Raghavan, SS, et al. DDIT3 immunohistochemistry is a useful tool for the diagnosis of myxoid liposarcoma. Am J Surg Pathol 2021; 45: 230–9.CrossRefGoogle ScholarPubMed
Hornick, JL, Bosenberg, MW, Mentzel, T, et al. Pleomorphic liposarcoma: clinicopathologic analysis of 57 cases. Am J Surg Pathol 2004; 28: 1257–67.CrossRefGoogle ScholarPubMed
Mariño-Enríquez, A, Hornick, JL, Dal Cin, P, et al. Dedifferentiated liposarcoma and pleomorphic liposarcoma: a comparative study of cytomorphology and MDM2/CDK4 expression on fine-needle aspiration. Cancer Cytopathol 2014; 122: 128–37.CrossRefGoogle ScholarPubMed
Guillou, L, Fletcher, CD. Benign lymphangioendothelioma (acquired progressive lymphangioma): a lesion not to be confused with well-differentiated angiosarcoma and patch stage Kaposi’s sarcoma: clinicopathologic analysis of a series. Am J Surg Pathol 2000; 24: 1047–57.CrossRefGoogle Scholar
Requena, L, Sangueza, OP, Cutaneous vascular anomalies. Part I. Hamartomas, malformations, and dilatation of preexisting vessels. J Am Acad Dermatol 1997; 37: 523–49.CrossRefGoogle ScholarPubMed
Fukunaga, M : Expression of D2-40 in lymphatic endothelium of normal tissues and in vascular tumours. Histopathology 2005; 46: 396402.CrossRefGoogle ScholarPubMed
Miettinen, M, Wang, ZF, Prox1 transcription factor as a marker for vascular tumors – evaluation of 314 vascular endothelial and 1086 nonvascular tumors. Am J Surg Pathol 2012; 36: 351–9.CrossRefGoogle ScholarPubMed
Hornick, JL, Fletcher, CD. Intraabdominal cystic lymphangiomas obscured by marked superimposed reactive changes: clinicopathological analysis of a series. Hum Pathol 2005; 36: 426–32.CrossRefGoogle ScholarPubMed
Thiex, JB, Mulliken, N, Revencu, LM, et al. A novel association between RASA1 mutations and spinal arteriovenous anomalies. Am J Neuroradiol 2010; 31: 775–9.CrossRefGoogle ScholarPubMed
Vugt, LJ, van der Vleuten, CJM, Flucke, U, Blokx, WAM. The utility of GLUT1 as a diagnostic marker in cutaneous vascular anomalies: A review of literature and recommendations for daily practice. Pathology Res Practice 2017; 213: 591–7.Google ScholarPubMed
Patrice, SJ, Wiss, K, Mulliken, JB. Pyogenic granuloma (lobular capillary hemangioma): a clinicopathologic study of 178 cases. Pediatr Dermatol 1991; 8: 267–76.CrossRefGoogle ScholarPubMed
Mentzel, T, Partanen, TA, Kutzner, H. Hobnail hemangioma (“targetoid hemosiderotic hemangioma”): clinicopathologic and immunohistochemical analysis of 62 cases. J Cutan Pathol 1999; 26: 279–86.CrossRefGoogle ScholarPubMed
Al Dhaybi, R, Powell, J, McCuaig, C, Kokta, V. Differentiation of vascular tumors from vascular malformations by expression of Wilms tumor 1 gene: evaluation of 126 cases. J Am Acad Dermatol 2010; 63: 1052–7.CrossRefGoogle ScholarPubMed
Huang, SC, Zhang, L, Sung, YS, et al. Frequent FOS gene rearrangements in epithelioid hemangioma: a molecular study of 58 cases with morphologic reappraisal. Am J Surg Pathol 2015; 39: 1313–21.CrossRefGoogle ScholarPubMed
Agaram, NP, Zhang, L, Cotzia, P, et al. Expanding the spectrum of genetic alterations in pseudomyogenic hemangioendothelioma with recurrent novel ACTB-FOSB gene fusions. Am J Surg Pathol 2018; 42: 1653–61.CrossRefGoogle ScholarPubMed
Frieden, IJ, Haggstrom, AN, Drolet, BA, et al. Infantile hemangiomas: current knowledge, future directions. Proceedings of a research workshop on infantile hemangiomas, April 7–9, 2005, Bethesda, Maryland. Pediatr Dermatol 2005; 22: 383406.CrossRefGoogle ScholarPubMed
North, PE, Waner, M, Mizeracki, A, Mihm, MC Jr. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol 2000; 31: 1122.CrossRefGoogle ScholarPubMed
Lyon, LL, North, PE, Mac-Moune Lai, F, et al. Kaposiform hemangioendothelioma: a study of 33 cases emphasizing its pathologic, immunophenotypic, and biologic uniqueness from juvenile hemangioma. Am J Surg Pathol 2004; 28: 559–68.Google Scholar
Zukerberg, LR, Nickoloff, BJ, Weiss, SW. Kaposiform hemangioendothelioma of infancy and childhood: an aggressive neoplasm associated with Kasabach–Merritt syndrome and lymphangiomatosis. Am J Surg Pathol 1993; 17: 321–8.CrossRefGoogle ScholarPubMed
Le Huu, AR, Jokinen, CH, Ruben, BP, et al. Expression of prox1, lymphatic endothelial nuclear transcription factor, in kaposiform hemangioendothelioma and tufted angioma. Am J Surg Pathol 2010; 34: 1563–73.Google ScholarPubMed
Chang, Y, Cesarman, E, Pessin, MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266: 1865–9.CrossRefGoogle ScholarPubMed
Cheuk, W, Wong, KO, Wong, CS, Dinkel, JE, Ben-Dor, D, Chan, JK. Immunostaining for human herpesvirus 8 latent nuclear antigen-1 helps distinguish Kaposi sarcoma from its mimickers. Am J Clin Pathol 2004; 121: 335–42.CrossRefGoogle ScholarPubMed
Reis, RM, Reis-Filho, JS, Longatto Filho, A, et al. Differential Prox-1 and CD31 expression in mucosae, cutaneous and soft tissue vascular lesions and tumors. Pathol Res Pract 2005; 201: 771–6.CrossRefGoogle ScholarPubMed
Pantanowitz, L, Pinkus, GS, Dezube, BJ, Tahan, SR. HHV8 is not limited to Kaposi’s sarcoma. Mod Pathol 2005; 18: 1148–50.CrossRefGoogle Scholar
Mentzel, T, Beham, A, Calonje, E, et al. Epithelioid hemangioendothelioma of skin and soft tissue: clinicopathologic and immunohistochemical study of 30 cases. Am J Surg Pathol 1997; 21: 363–74.CrossRefGoogle ScholarPubMed
Miettinen, M, Fetsch, JF. Distribution of keratins in normal endothelial cells and a spectrum of vascular tumors: implications in tumor diagnosis. Hum Pathol 2000; 31: 1062–7.CrossRefGoogle Scholar
Errani, C, Zhang, L, Sung, YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 2011; 50: 644–53.CrossRefGoogle ScholarPubMed
Antonescu, CR, Le Loarer, F, Mosquera, JM, et al. Novel YAP1- TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer 2013; 52: 775–84.CrossRefGoogle ScholarPubMed
Doyle, LA, Fletcher, CDM, Hornick, JL. Nuclear expression of CAMTA1 distinguishes epithelioid hemangioendothelioma from histologic mimics. Am J Surg Pathol 2016; 40: 94102.CrossRefGoogle ScholarPubMed
Antonescu, CR, Dickson, BC, Sung, YS, et al. Recurrent YAP1 and MAML2 gene rearrangements in retiform and composite hemangioendothelioma. Am J Surg Pathol 2020; 44: 1677–84.CrossRefGoogle ScholarPubMed
Anderson, WJ, Fletcher, CDM, Hornick, JL. Loss of expression of YAP1 C-terminus as an ancillary marker for epithelioid hemangioendothelioma variant with YAP1-TFE3 fusion and other YAP1-related vascular neoplasms. Mod Pathol 2021; 34: 2036–42.CrossRefGoogle Scholar
Perry, KD, Al-Lbraheemi, A, Rubin, BP, et al. Composite hemangioendothelioma with neuroendocrine marker expression: an aggressive variant. Mod Pathol 2017; 30: 1589–602.Google ScholarPubMed
Hornick, JL, Fletcher, CD. Pseudomyogenic hemangioendothelioma: a distinctive often multicentric tumor with indolent behavior. Am J Surg Pathol 2011; 35: 190201.CrossRefGoogle ScholarPubMed
Agaram, NP, Zhang, L, Cotzia, P, et al. Expanding the spectrum of genetic alterations in pseudomyogenic hemangioendothelioma with recurrent novel ACTB-FOSB gene fusions. Am J Surg Pathol 2018; 42: 1653–61.CrossRefGoogle ScholarPubMed
Sugita, S, Hirano, H, Kikuchi, N, et al. Diagnostic utility of FOSB immunohistochemistry in pseudomyogenic hemangioendothelioma and its histological mimics. Diagn Pathol 2016; 11: 75. doi: 10.1186/s13000-016-0530-2.CrossRefGoogle ScholarPubMed
Dermawan, JK, Westra, WH, Antonescu, CR. Recurrent PTBP1::MAML2 fusions in composite hemangioendothelioma with neuroendocrine differentiation: a report of two cases involving neck lymph nodes. Genes Chromosomes Cancer 2022; 61: 187–93.CrossRefGoogle ScholarPubMed
Miettinen, M, Wang, ZF, Paetau, A, et al. ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol 2011; 35: 432–41.CrossRefGoogle Scholar
Brenn, T, Fletcher, CD. Radiation-associated cutaneous atypical vascular lesions and angiosarcoma: clinicopathologic analysis of 42 cases. Am J Surg Pathol 2005; 29: 983–9.CrossRefGoogle ScholarPubMed
Shon, W, Sukov, WR, Jenkins, SM, Folpe, AL. MYC amplification and overexpression in primary cutaneous angiosarcoma: a fluorescence in-situ hybridization and immunohistochemical study. Mod Pathol 2014; 27: 509–15.CrossRefGoogle ScholarPubMed
Trindade, F, Kutzner, H, Requena, L, Tellechea, O, Colmenero, I. Microvenular hemangioma: an immunohistochemical study of 9 cases. Am J Dermatopathol 2012; 34: 810–12.CrossRefGoogle ScholarPubMed
Hagari, Y, Hagari, S, Kambe, N, et al. Acral pseudolymphomatous angiokeratoma of children: immunohistochemical and clonal analyses of the infiltrating cells. J Cutan Pathol 2002; 29: 313–18.CrossRefGoogle ScholarPubMed
Chen, H, Thompson, LD, Aguilera, NS, Abbondanzo, SL. Kimura’s disease: a clinicopathologic study of 21 cases. Am J Surg Pathol 2004; 28: 505–13.CrossRefGoogle ScholarPubMed
Oudijk, L, den Bakker, MA, Hop, WC, et al. Solitary, multifocal and generalized myofibromas: clinicopathological and immunohistochemical features of 114 cases. Histopathology 2012; 60: E111.CrossRefGoogle ScholarPubMed
Koo, SC, Janeway, KA, Harris, MH, et al. A distinctive genomic and immunohistochemical profile for NOTCH3 and PDGFRB in myofibroma with diagnostic and therapeutic implications. Int J Surg Pathol 2020; 28: 128–37.CrossRefGoogle ScholarPubMed
Folpe, AL, Fanburg-Smith, JC, Miettinen, M, Weiss, SW. Atypical and malignant glomus tumors: analysis of 52 cases, with a proposal for the reclassification of glomus tumors. Am J Surg Pathol 2001; 25: 112.CrossRefGoogle ScholarPubMed
Mentzel, T, Dei Tos, AP, Sapi, Z, Kutzner, H. Myopericytoma of skin and soft tissues: clinicopathologic and immunohistochemical study of 54 cases. Am J Surg Pathol 2006; 30: 104–13.CrossRefGoogle ScholarPubMed
Matsuyama, A, Hisaoka, M, Hashimoto, H. Angioleiomyoma: a clinicopathologic and immunohistochemical reappraisal with special reference to the correlation with myopericytoma. Hum Pathol 2007; 38: 645–51.CrossRefGoogle Scholar
Ørholt, M, Abebe, K, Aaberg, F, et al. Immunohistochemical characteristics of atypical fibroxanthoma and pleomorphic dermal sarcoma: a systematic review and meta-analysis. Am J Dermatopathol 2022; 44: 913–20.CrossRefGoogle ScholarPubMed
Henderson, SA, Torres-Cabala, CA, Curry, JL, et al. p40 is more specific than p63 for the distinction of atypical fibroxanthoma from other cutaneous spindle cell malignancies. Am J Surg Pathol 2014; 38: 1102–10.CrossRefGoogle ScholarPubMed
Thway, K, Fisher, C. Angiomatoid fibrous histiocytoma: the current status of pathology and genetics. Arch Pathol Lab Med 2015; 139: 674–82.CrossRefGoogle ScholarPubMed
Cheah, AL, Zou, Y, Lanigan, C, et al. ALK expression in angiomatoid fibrous histiocytoma: a potential diagnostic pitfall. Am J Surg Pathol 43: 93101.CrossRefGoogle Scholar
Calonje, E, Guerin, D, McCormick, D, Fletcher, CD. Superficial angiomyxoma: clinicopathologic analysis of a series of distinctive but poorly recognized cutaneous tumors with tendency for recurrence. Am J Surg Pathol 1999; 23: 910–17.CrossRefGoogle ScholarPubMed
Hafeez, F, Krakowski, AC, Lian, CG, et al. Sporadic superficial angiomyxomas demonstrate loss of PRKAR1A expression. Histopathology 2022; 80: 1001–3.CrossRefGoogle ScholarPubMed
van Roggen, JF, van Unnik, JA, Briaire-de Bruijn, IH, Hogendoorn, PC. Aggressive angiomyxoma: a clinicopathological and immunohistochemical study of 11 cases with long-term follow-up. Virchows Arch 2005; 446: 157–63.CrossRefGoogle ScholarPubMed
Bigby, SM, Symmans, PJ, Miller, MV, et al. Aggressive angiomyxoma of the female genital tract and pelvis: clinicopathologic features with immunohistochemical analysis. Int J Gynecol Pathol 2011; 30: 505–13.CrossRefGoogle ScholarPubMed
Hornick, JL, Fletcher, CD. Cellular neurothekeoma: detailed characterization in a series of 133 cases. Am J Surg Pathol 2007; 31: 329–40.CrossRefGoogle Scholar
Chaudhry, IH, Calonje, E. Dermal non-neural granular cell tumour (so-called primitive polypoid granular cell tumour): a distinctive entity further delineated in a clinicopathological study of 11 cases. Histopathology 2005; 47: 179–85.CrossRefGoogle Scholar
Cohen, JN, Yeh, I, Jordan, RC, et al. Cutaneous non-neural granular cell tumors harbor recurrent ALK gene fusions. Am J Surg Pathol 2018; 42: 1133–42.CrossRefGoogle ScholarPubMed
Llamas-Velasco, M, Requena, L, Kutzner, H, et al. Fumarate hydratase immunohistochemical staining may help to identify patients with multiple cutaneous and uterine leiomyomatosis (MCUL) and hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. J Cutan Pathol 2014; 41: 859–65.CrossRefGoogle ScholarPubMed
Liu, C, Dillon, J, Beavis, AL, et al. Prevalence of somatic and germline mutations of Fumarate hydratase in uterine leiomyomas from young patients. Histopathology 2020; 76: 354–65.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×