Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-6lqsf Total loading time: 0 Render date: 2025-06-19T01:19:46.023Z Has data issue: false hasContentIssue false

Part III - Prospects

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.CrossRefGoogle ScholarPubMed
Chen, Q., Smith, J. M., Park, J. et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 13 (2013), 45564561.CrossRefGoogle ScholarPubMed
Wang, C., Qiao, Q., Shokuhfar, T. and Klie, R. F., High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater., 26 (2014), 34103414.CrossRefGoogle ScholarPubMed
De Clercq, A., Dachraoui, W., Margeat, O. et al., Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.CrossRefGoogle ScholarPubMed
Mohanty, N., Fahrenholtz, M., Nagaraja, A., Boyle, D. and Berry, V., Impermeable graphenic encasement of bacteria. Nano Lett., 11 (2011), 12701275.CrossRefGoogle ScholarPubMed
Ericius, P., Kim, K., Zettl, A. et al., In-situ observations of Pt nanoparticle growth at atomic resolution using graphene liquid cells and Cc correction. Microsc. Microanal., 18 (2012), 10961097.CrossRefGoogle Scholar
Nair, R. R., Blake, P., Blake, J. R. et al., Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl. Phys. Lett., 97 (2010), 153102.CrossRefGoogle Scholar
Lee, Z., Jeon, K., Dato, A. and Erni, R., Direct imaging of soft–hard interfaces enabled by graphene. Nano Lett., 9 (2009), 33653369.CrossRefGoogle ScholarPubMed
Regan, W., Alem, N., Alemán, B. et al., A direct transfer of layer-area graphene. Appl. Phys. Lett., 96 (2010), 113102.CrossRefGoogle Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.CrossRefGoogle ScholarPubMed
Zheng, H., Claridge, S. A, Minor, A. M., Alivisatos, A. P., and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.CrossRefGoogle Scholar
Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.CrossRefGoogle ScholarPubMed
Mirsaidov, U. M., Zheng, H., Casana, Y. and Matsudaira, P., Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 102 (2012), L15L17.CrossRefGoogle Scholar
Zheng, H., Mirsaidov, U. M., Wang, L.-W. and Matsudaira, P., Electron beam manipulation of nanoparticles. Nano Lett., 12 (2012), 56445648.CrossRefGoogle ScholarPubMed
Proetto, M. T., Rush, A. M., Chien, M.-P. et al., Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc., 136 (2014), 11621165.CrossRefGoogle ScholarPubMed
Jungjohann, K. L., Bliznakov, S., Sutter, P. W., Stach, E. A and Sutter, E. A., In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett., 13 (2013), 29642970.CrossRefGoogle ScholarPubMed
Mirsaidov, U. M., Zheng, H., Bhattacharya, D., Casana, Y. and Matsudaira, P., Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA, 109 (2012), 71877190.CrossRefGoogle Scholar
Parent, L. R., Robinson, D. B., Cappillino, P. J. et al., In situ observation of directed nanoparticle aggregation during the synthesis of ordered nanoporous metal in soft templates. Chem. Mater., 26 (2014), 14261433.CrossRefGoogle Scholar
Zheng, H., Smith, R. K., Jun, Y.-W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.CrossRefGoogle ScholarPubMed
Liao, H.-G., Cui, L., Whitelam, S. and Zheng, H., Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336 (2012), 10111014.CrossRefGoogle ScholarPubMed
Park, J., Zheng, H., Lee, W. C. et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.CrossRefGoogle ScholarPubMed
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.CrossRefGoogle Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.CrossRefGoogle Scholar
Adiga, V. P., Dunn, G. D., Alivisatos, A. P. and Zettl, A., Liquid flow cells having graphene on nitride for microscopy. US Patent Application No. US 20160042912 A1.Google Scholar
Holtz, M. E., Yu, Y., Gao, J., Abruña, H. D. and Muller, D. A., In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal., 19 (2013), 10271035.CrossRefGoogle ScholarPubMed
Polte, J., Erler, R. and Thu, A. F. et al., Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano, 4 (2010), 10761082.CrossRefGoogle ScholarPubMed
Harada, M. and Katagiri, E., Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis. Langmuir, 26 (2010), 1789617905.CrossRefGoogle ScholarPubMed
Polte, J., Ahner, T. T., Delissen, F. et al., Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc., 132 (2010), 12961301.CrossRefGoogle ScholarPubMed
Lu, X., Rycenga, M., Skrabalak, S. E., Wiley, B. and Xia, Y., Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem., 60 (2009), 167192.CrossRefGoogle ScholarPubMed
Schapotschnikow, P., Pool, R. and Vlugt, T. J. H., Molecular simulations of interacting nanocrystals. Nano Lett., 8 (2008), 29302934.CrossRefGoogle ScholarPubMed

References

Goldstein, J., Joy, D., Maher, D., Silcox, J. and Zaluzec, N. J, Introduction to Analytical Electron Microscopy (New York: Plenum Press, 1979), Chapters 3, 4, 7, 9 and 10.Google Scholar
Malis, T., Cheng, S. C. and Egerton, R. F., EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech., 8 (1988), 193200.CrossRefGoogle ScholarPubMed
Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (New York: Plenum Press, 2011).CrossRefGoogle Scholar
Zaluzec, N. J., Burke, M. G., Haigh, S. J. and Kulzick, M. A., X-ray Energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. Microsc. Microanal., 20 (2014), 323329.CrossRefGoogle ScholarPubMed
Jungjohann, K. L., Evans, J. E., Aguiar, J. A., Arslan, I. and Browning, N. D., Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal., 18 (2012), 621627.CrossRefGoogle ScholarPubMed
Holtz, M. E., Yu, Y., Gao, J., Abruña, H. D. and Muller, D. A., In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal., 19 (2013), 10271035.CrossRefGoogle ScholarPubMed
Holtz, M. E., Yu, Y., Gunceler, D. et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett., 14 (2014), 14531459.CrossRefGoogle ScholarPubMed
Lewis, E. A, Haigh, S. J., Slater, T. J. A. et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.CrossRefGoogle ScholarPubMed
Yuk, J. M., Seo, H. K., Choi, J. W. and Lee, J. Y., Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano, 8 (2014), 74787485.CrossRefGoogle ScholarPubMed
Scheinfein, M., Electronic and chemical analysis of fluoride interface structures at subnanometer spatial resolution. J. Vac. Sci. Technol., 4 (1986), 326.CrossRefGoogle Scholar
Batson, P. E., Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature, 366 (1993), 727728.CrossRefGoogle Scholar
Muller, D. A., Tzou, Y., Raj, R. and Silcox, J., Mapping sp(2) and sp(3) states of carbon at subnanometer spatial-resolution. Nature, 366 (1993), 725727.CrossRefGoogle Scholar
Muller, D. A., Kourkoutis, L. Fitting, Murfitt, M. et al., Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science, 319 (2008), 10731076.CrossRefGoogle ScholarPubMed
Klein, K. L., de Jonge, N. and Anderson, I. M., Energy-loss characteristics for EFTEM imaging with a liquid flow cell. Microsc. Microanal., 17 (2011), 780781.CrossRefGoogle Scholar
Daulton, T. L., Little, B. J., Lowe, K. and Jones-Meehan, J., In situ environmental cell-transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal., 7 (2001), 470485.CrossRefGoogle ScholarPubMed
Yuk, J. M. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.CrossRefGoogle ScholarPubMed
Zaluzec, N. J. et al., X-ray and electron energy loss spectroscopy in liquids in the analytical S/TEM. Microsc. Microanal., 20 (2014), 15181519.CrossRefGoogle Scholar
Schilling, S., Janssen, A., Zhong, X. L., Zaluzec, N. J. and Burke, M. G., Liquid in situ analytical electron microscopy: examining SCC precursor events for Type 304 stainless steel in H2O. Microsc. Microanal., 21 (2015), 12911292.CrossRefGoogle Scholar
Zaluzec, N. J., Analytical formulae for calculation of X-ray detector solid angles in the scanning and scanning/transmission analytical electron microscope. Microsc. Microanal., 20 (2014), 13181326.CrossRefGoogle ScholarPubMed
Zaluzec, N. J., The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy. Ultramicroscopy, 151 (2015), 240249.CrossRefGoogle ScholarPubMed
Wong, K., Chen, C., Wei, K., Roy, V. A. L. and Chathoth, S. M., Diffusion of gold nanoparticles in toluene and water as seen by dynamic light scattering. J. Nanoparticle Res., 17 (2015), 153-1153-8.CrossRefGoogle Scholar
Zaluzec, N. J., When is Si3N4 not Si3N4? When it is a low stress SiNx membrane window. Microsc. Microanal., 21 (2015), 959960.CrossRefGoogle Scholar
Zhong, X. et al., Novel hybrid sample preparation method for in situ liquid cell TEM analysis. Microsc. Microanal., 20 (2014), 15141515.CrossRefGoogle Scholar
Schilling, S., Janssen, A., Burke, M. G. et al., In situ analytical election microscopy: imaging and analysis of steel in liquid water. Proc. Intl. Microsc. Conf. 2014, Prague (2014), Ed. Hozak, P., IT-7-O-2947.Google Scholar

References

Scherzer, O., Über einige Fehler von Elektronenlinsen. Z. Phys., 101 (1936), 593603.CrossRefGoogle Scholar
Scherzer, O., The theoretical resolution limit of the electron microscope. J. Appl. Phys., 20 (1949), 2029.CrossRefGoogle Scholar
Coene, W. and Jansen, A. J., Image delocalisation and high resolution tranmission electron microscopic imaging with a field emission gun. Scanning Microsc. Suppl., 6 (1992), 379403.Google Scholar
Cervera Gontard, L., Dunin-Borkowski, R. E., Hÿtch, M. J. and Ozkaya, D., Delocalisation in images of Pt nanoparticles. J. Phys. Conf. Ser., 26 (2006), 292295.CrossRefGoogle Scholar
Coene, W. M. J., Thust, A., Op de Beeck, M. and van Dyck, D., Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy, 64 (1996), 109135.CrossRefGoogle Scholar
Thust, A., Coene, W. M. J., Op de Beeck, M. and van Dyck, D., Focal-series reconstruction in HRTEM: simulation studies on nonperiodic objects. Ultramicroscopy, 64 (1996), 211230.CrossRefGoogle Scholar
Kisielowski, C., Hetherington, C. J. D., Wang, Y. C. et al., Imaging columns of the light elements carbon, nitrogen and oxygen with sub angstrom resolution. Ultramicroscopy, 89 (2001), 243263.CrossRefGoogle ScholarPubMed
Cervera Gontard, L., Chang, L.-Y., Hetherington, C. J. D. et al., Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew. Chem., 46 (2007), 36833685.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S. et al., A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy, 75 (1998), 5360.CrossRefGoogle Scholar
Lentzen, M., Jahnen, B., Jia, C. L. et al., High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy, 92 (2002), 233242.CrossRefGoogle ScholarPubMed
Jia, C. L., Lentzen, M. and Urban, K., Atomic-resolution imaging of oxygen in perovskite ceramics. Science, 299 (2003), 870873.CrossRefGoogle ScholarPubMed
Jia, C. L., Mi, S. B., Urban, K. et al., Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater., 7 (2008), 5761.CrossRefGoogle ScholarPubMed
Jia, C. L., Houben, L., Thust, A. and Barthel, J., On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy, 110 (2010), 500505.CrossRefGoogle Scholar
Jia, C. L., Barthel, J., Gunkel, F. et al., Atomic-scale measurement of structure and chemistry of a single-unit-cell layer of LaAlO3 embedded in SrTiO3. Microsc. Microanal., 19 (2013), 310318.CrossRefGoogle ScholarPubMed
Jia, C. L., Mi, S.-B., Barthel, J. et al., Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nat. Mater., 13 (2014), 10441049.CrossRefGoogle ScholarPubMed
Barthel, J. and Thust, A., Aberration measurement in HRTEM: implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. Ultramicroscopy, 111 (2010), 2746.CrossRefGoogle ScholarPubMed
Barthel, J. and Thust, A., On the optical stability of high-resolution transmission electron microscopes. Ultramicroscopy, 134 (2013), 617.CrossRefGoogle ScholarPubMed
Hansen, T. W., Wagner, J. B. and Dunin-Borkowski, R. E., Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science. Mater. Sci. Technol., 26 (2010), 13381344.CrossRefGoogle Scholar
Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (New York: Springer, 2011).CrossRefGoogle Scholar
Boothroyd, C. B., Moreno, M. S., Duchamp, M. et al., Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide. Ultramicroscopy, 145 (2014), 6673.CrossRefGoogle ScholarPubMed
Zach, J., Chromatic correction: a revolution in electron microscopy? Phil. Trans. R. Soc. A, 367 (2009), 36993707.CrossRefGoogle ScholarPubMed
Rose, H., Future trends in aberration corrected electron microscopy. Phil. Trans. R. Soc. A, 367 (2009), 38093823.CrossRefGoogle ScholarPubMed
Kabius, B., Hartel, P., Haider, M. et al., First application of CC-corrected imaging for high-resolution and energy-filtered TEM. J. Electron Microsc., 58 (2009), 147155.CrossRefGoogle ScholarPubMed
Leary, R. and Brydson, R., Chromatic aberration correction: the next step in electron microscopy. Adv. Imagi. Electron Phys., 165 (2011), 73130.CrossRefGoogle Scholar
Haider, M., Hartel, P., Müller, H., Uhlemann, S. and Zach, J., Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc. Microanal., 16 (2010), 393408.CrossRefGoogle Scholar
Rose, H., Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Nucl. Instrum. Methods Phys. Res. A, 519 (2004), 1227.CrossRefGoogle Scholar
Rose, H., Prospects for aberration-free electron microscopy. Ultramicroscopy, 103 (2005), 16.CrossRefGoogle ScholarPubMed
Haider, M., Müller, H., Uhlemann, S. et al., Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy, 108 (2008), 167178.CrossRefGoogle ScholarPubMed
Uhlemann, S., Müller, H., Hartel, P., Zach, J. and Haider, M., Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys. Rev. Lett., 111 (2013), 046101.CrossRefGoogle ScholarPubMed
Urban, K. W., Mayer, J., Jinschek, J. R. et al., Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope. Phys. Rev. Lett., 110 (2013), 185507.CrossRefGoogle ScholarPubMed
Forbes, B. D., Houben, L., Mayer, J., Dunin-Borkowski, R. E. and Allen, L. J., Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy. Ultramicroscopy, 147 (2014), 98105.CrossRefGoogle ScholarPubMed
Baudoin, J. P., Jinschek, J. R., Boothroyd, C. B., Dunin-Borkowski, R. E. and de Jonge, N., Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell. Microsc. Microanal., 19 (2013), 814821.CrossRefGoogle Scholar
Reimer, L. and Ross-Messemer, M., Top–bottom effect in energy-selecting TEM. Ultramicroscopy, 21 (1987), 385388.CrossRefGoogle Scholar
Reimer, L. and Gentsch, P., Superposition of chromatic error and beam broadening in TEM of thick carbon and organic specimens. Ultramicroscopy, 1 (1975), 15.CrossRefGoogle Scholar
Gentsch, P., Gilde, H. and Reimer, L., Measurement of the top–bottom effect in scanning transmission electron microscopy of thick amorphous specimens. J. Microsc., 100 (1974), 8192.CrossRefGoogle Scholar
Sousa, A. A., Hohmann-Marriott, M. F., Zhang, G. and Leapman, R. D., Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections. Ultramicroscopy, 109 (2009), 213221.CrossRefGoogle ScholarPubMed
Demers, H., Ramachandra, R., Drouin, D. and de Jonge, N., The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc. Microanal., 18 (2012), 582590.CrossRefGoogle ScholarPubMed
Hyun, J. K., Ercius, P. and Muller, D. A., Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy, 109 (2008), 17.CrossRefGoogle ScholarPubMed

References

Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface, Nat. Mater., 2 (2003), 532536.CrossRefGoogle ScholarPubMed
de Jonge, N., Peckys, D. B., Kremers, G. J. and Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.CrossRefGoogle ScholarPubMed
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.CrossRefGoogle ScholarPubMed
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.CrossRefGoogle ScholarPubMed
Zheng, H. M., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.CrossRefGoogle ScholarPubMed
Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.CrossRefGoogle ScholarPubMed
Woehl, T. J., Park, C., Evans, J. E. et al., Direct observation of abnormal Ostwald ripening in nanoparticle ensembles caused by aggregative growth. Nano Lett., 14 (2014), 373378.CrossRefGoogle Scholar
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.CrossRefGoogle ScholarPubMed
Gu, M., Parent, L. R., Mehdi, L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.CrossRefGoogle ScholarPubMed
Abellán, P., Park, C., Mehdi, B. L. et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in-situ TEM. Nano Lett., 14 (2014), 12931299.CrossRefGoogle Scholar
Sutter, E., Jungjohann, K. L., Bliznakov, S. et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.CrossRefGoogle ScholarPubMed
Kim, J. S., LaGrange, T. B., Reed, B. W. et al., Imaging of transient structures using nanosecond in situ TEM. Science, 321 (2008), 14721475.CrossRefGoogle ScholarPubMed
Candes, E. J., Romberg, J. and Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52 (2006), 489509.CrossRefGoogle Scholar
Welch, D. A., Faller, R., Evans, J. E. and Browning, N. D., Simulating realistic imaging conditions for in-situ liquid microscopy. Ultramicroscopy, 135 (2013), 3642.CrossRefGoogle ScholarPubMed
Park, C., Woehl, T. J., Evans, J. E. and Browning, N. D., Minimum cost multi-way data association for optimizing large-scale multitarget tracking of interacting objects. IEEE Trans. Patt. Anal. Mach. Intell., 37 (2015), 611624.CrossRefGoogle Scholar
Goldman, N. and Browning, N. D., Gold cluster diffusion kinetics on stoichiometric and reduced rutile TiO2 (110). J. Phys. Chem. C, 115 (2011), 1161111617.CrossRefGoogle Scholar
Evans, J. E., Jungjohann, K. L., Wong, P. C. K. et al., Visualizing macromolecular complexes with in-situ liquid transmission electron microscopy. Micron, 43 (2012), 10851090.CrossRefGoogle Scholar
Kobayashi, T. and Laidler, K., Kinetic analysis for solid-supported enzymes. Biochim. Biophys. Acta, 302 (1973), 112.CrossRefGoogle ScholarPubMed
Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R. and Fernandez-Lafuente, R., Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev., 42 (2013), 62906307.CrossRefGoogle ScholarPubMed
Lin, B., Yu, J. and Rice, S. A., Direct measurements of constrained Brownian motion of an isolated sphere between two walls. Phys. Rev. E, 62 (2000), 39093919.CrossRefGoogle ScholarPubMed
Kheifets, S., Simha, A., Melin, K., Li, T. and Raizen, M. G., Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science, 343 (2014), 14931496.CrossRefGoogle ScholarPubMed
Burada, P. S., Hanggi, P., Marchesoni, F., Schmid, G. and Talkner, P., Diffusion in confined geometries. ChemPhysChem, 10 (2009), 4554.CrossRefGoogle ScholarPubMed
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.CrossRefGoogle ScholarPubMed
Jesson, D. E., Pennycook, S. J. and Baribeau, J. M, Direct imaging of interfacial ordering in ultrathin (SimGen)P superlattices. Phys. Rev. Lett., 66 (1991), 750753.CrossRefGoogle ScholarPubMed
Muller, D. A., Kourkoutis, L. F., Murfitt, M. et al., Atomic scale chemical imaging of composition and bonding by aberration corrected microscopy. Science, 319 (2008), 10731076.CrossRefGoogle ScholarPubMed
Reed, B. W., Armstrong, M. R., Browning, N. D. et al., The evolution of ultrafast electron microscope instrumentation. Microsc. Microanal., 15 (2009), 272281.CrossRefGoogle ScholarPubMed
Bostanjoglo, O., High-speed electron microscopy. Adv. Imag. Electron Phys., 121 (2002), 12111251.Google Scholar
Bostanjoglo, O. and Horinek, W. R., Pulsed TEM: a new method to detect transient structures in fast phase-transitions. Optik, 65 (1983), 361367.Google Scholar
LaGrange, T. B., Armstrong, M., Boyden, K. et al., Single shot dynamic transmission electron microscopy for materials science. Appl. Phys. Lett., 89 (2006), 044105.CrossRefGoogle Scholar
Armstrong, M., Boyden, K., Browning, N. D. et al., In-situ synthesis of nanowires in the dynamic TEM. Ultramicroscopy, 107 (2007), 356367.CrossRefGoogle Scholar
Armstrong, M. R., Browning, N. D., Reed, B. W. and Torralva, B. R., Prospects for electron imaging with ultrafast time resolution. Appl. Phys. Lett., 90 (2007), 114101.CrossRefGoogle Scholar
Taheri, M. L., Reed, B. W., Lagrange, T. B. and Browning, N. D., In-situ synthesis of nanowires in the dynamic TEM. Small, 4 (2008), 21872190.CrossRefGoogle ScholarPubMed
Reed, B. W., LaGrange, T., Shuttlesworth, R. M. et al., Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope. Rev. Sci. Instrum., 81 (2010), 053706.CrossRefGoogle Scholar
Masiel, D. J., LaGrange, T., Reed, B. W., Guo, T. and Browning, N. D., Time resolved annular dark field imaging of catalyst nanoparticles. ChemPhysChem, 11 (2010), 20882090.CrossRefGoogle ScholarPubMed
Browning, N. D., Bonds, M. A., Campbell, G. H. et al., Recent developments in DTEM. Curr. Opin. Solid State Mater. Sci., 16 (2012), 2330.CrossRefGoogle Scholar
Evans, J. E. and Browning, N. D., Enabling direct nanoscale dynamic observations of biological systems with DTEM. Microscopy, 62 (2013), 147156.CrossRefGoogle Scholar
Rickman, B. L., Berger, J. A., Nicholls, A. W. and Schroeder, W. A., Intrinsic electron beam emittance from metal photocathodes: the effect of the electron effective mass. Phys. Rev. Lett., 111 (2013), 237401.CrossRefGoogle ScholarPubMed
Lobastov, V. A., Srinivasan, R. and Zewail, A. H., Four-dimensional ultrafast electron microscopy. Proc. Natl. Acad. Sci. USA, 102 (2005), 70697073.CrossRefGoogle ScholarPubMed
Zewail, A. H., 4D ultrafast electron diffraction, crystallography and microscopy. Annu. Rev. Phys. Chem., 57 (2006), 65103.CrossRefGoogle ScholarPubMed
Carbone, F., Kwon, O. H. and Zewail, A. H., Dynamics of chemical bonding mapped by energy resolved 4D electron microscopy. Science, 325 (2009), 181184.CrossRefGoogle ScholarPubMed
Yurtserver, A. and Zewail, A. H., 4D nanoscale diffraction observed by convergent beam ultrafast electron microscopy. Science, 326 (2009), 708712.CrossRefGoogle Scholar
Zewail, A. H., 4D electron microscopy. Science, 328 (2010), 187193.CrossRefGoogle Scholar
Kwon, O. H. and Zewail, A. H., 4D electron microscopy. Science, 328 (2010), 16681673.CrossRefGoogle Scholar
Hofer, F., Grogger, W., Kothleitner, G. and Warbichler, P., Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy, 67 (1997), 83103.CrossRefGoogle Scholar
Leary, R., Saghi, Z., Midgley, P. A. and Holland, D. J., Compressed sensing electron tomography. Ultramicroscopy, 131 (2013), 7091.CrossRefGoogle ScholarPubMed
Stevens, A., Yang, H., Carin, L., Arslan, I. and Browning, N. D., The potential for Bayesian compressive sensing to significantly reduce electron dose in high resolution STEM images. Microscopy, 63 (2014), 4151.CrossRefGoogle ScholarPubMed
Arce, G. R., Brady, D. J., Carin, L., Arguello, H. and Kittle, D. S., Compressive coded aperture spectral imaging. IEEE Signal Proces. Mag., 31 (2014), 105115.CrossRefGoogle Scholar
Stevens, A., Kovarik, L., Yuan, X., Carin, L. and Browning, N. D., Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Adv. Struct. Chem. Imag., 1 (2015), 10.CrossRefGoogle Scholar
Liu, Y., Tai, K. and Dillon, S. J., Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.CrossRefGoogle Scholar
Proetto, M. T., Rush, A. M., Chien, M. et al., Transmission electron microscopy of a synthetic soft material in liquid water. J. Am. Chem. Soc., 136 (2014), 11621165.CrossRefGoogle Scholar
Gai, P. L., Developments in in situ environmental cell high-resolution electron microscopy and applications to catalysis. Topics in Catalysis, 21 (2002), 161173.CrossRefGoogle Scholar
McPherson, A. and Eisenberg, D., In Donev, R.. ed., Protein Structures and Diseases, Advances in Protein Chemistry and Structural Biology (New York: Academic Press, 2011).Google Scholar
Tarascon, J. M and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.CrossRefGoogle ScholarPubMed
Goodenough, J. B and Kim, Y., Challenges for rechargeable Li batteries. Chem. Mater., 22 (2010), 587.CrossRefGoogle Scholar
Jie, X. L. and Nazar, L. F., Advances in Li-S batteries. J. Mater. Chem., 20 (2010), 98219826.CrossRefGoogle Scholar
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. and Tarascon, J. M., Li-O2 and Li-S batteries with high energy storage. Nat. Mater., 11 (2012), 1929.CrossRefGoogle Scholar
Verma, P., Maire, P. and Novak, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochem. Acta, 55 (2010), 63326341.CrossRefGoogle Scholar
Wen, J., Yu, Y. and Chen, C., A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater. Express, 2 (2012), 197212.CrossRefGoogle Scholar
Huang, J. Y., Zhong, L., Wang, C. M. et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 330 (2010), 15151520.CrossRefGoogle ScholarPubMed
Mehdi, B. L., Gu, M., Parent, L. R. et al., In-situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal., 20 (2014), 484492.CrossRefGoogle ScholarPubMed
Mehdi, B. L., Nasybulin, E., Qian, J. et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical S/TEM. Nano Lett., 15 (2015), 21682173.CrossRefGoogle ScholarPubMed
Glaeser, R. M., Downing, K., DeRosier, D., Chiu, W. and Frank, J., Electron Crystallography of Biological Macromolecules (Oxford: Oxford University Press, 2007).CrossRefGoogle Scholar
Berriman, J. and Unwin, N., Analysis of transient structures by cryomicroscopy combined with rapid mixing of spray droplets. Ultramicroscopy, 56 (1994), 241252.CrossRefGoogle ScholarPubMed
Shaikh, T. R., Barnard, D., Meng, X. and Wagenknecht, T., Implementation of a flash-photolysis system for time-resolved cryo-electron microscopy. J. Struct. Biol., 165 (2009), 184189.CrossRefGoogle ScholarPubMed
Subramanian, S. and Henderson, R., Electron crystallography of bacteriorhodopsin with millisecond time resolution. J. Struct Biol., 144 (1999), 25462562.Google Scholar
Zhang, L., Song, J., Cavigiolio, G. et al., Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy. J. Lipid Res., 52 (2011), 175184.CrossRefGoogle Scholar

References

Stapels, D. A. C., Ramyar, K. X., Bischoff, M. et al., Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc. Natl. Acad. Sci. USA, 111 (2014), 1318713192.CrossRefGoogle ScholarPubMed
Kendrew, J. C., Bodo, G., Dintzis, H. M. et al., A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181 (1958), 662666.CrossRefGoogle ScholarPubMed
Frank, J., Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct., 31 (2002), 303319.CrossRefGoogle ScholarPubMed
Schmidt, A., Teeter, M., Weckert, E. and Lamzin, V. S., Crystal structure of small protein crambin at 0.48 Å resolution. Acta Crystallogr. Sect. F, 67 (2011), 424428.CrossRefGoogle ScholarPubMed
Bai, X. C., Fernandez, I. S., McMullan, G. and Scheres, S. H. W., Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife, 2 (2013), e00461.CrossRefGoogle ScholarPubMed
Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. and Subramaniam, S., Structure of beta-galactosidase at 3.2-angstrom resolution obtained by cryo-electron microscopy. Proc. Natl. Acad. Sci. USA, 111 (2014), 1170911714.CrossRefGoogle Scholar
Glaeser, R. M., Retrospective: Radiation damage and its associated “Information Limitations”. J. Struct. Biol., 163 (2008), 271276.CrossRefGoogle ScholarPubMed
Egerton, R. F., Control of radiation damage in the TEM. Ultramicroscopy, 127 (2013), 100108.CrossRefGoogle ScholarPubMed
Gilmore, B. L., Showalter, S. P., Dukes, M. J. et al., Visualizing viral assemblies in a nanoscale biosphere. Lab Chip, 13 (2013), 216219.CrossRefGoogle Scholar
Reimer, L. and Kohl, H., Transmission Electron Microscopy: Physics of Image Formation (New York: Springer, 2008).Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.CrossRefGoogle Scholar
Schneider, N. M., Norton, M. M., Mendel, B. J. et al., Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 118 (2014), 2237322382.CrossRefGoogle Scholar
Woehl, T. J., Jungjohann, K. L., Evans, J. E. et al., Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 127 (2013), 5363.CrossRefGoogle ScholarPubMed
Mirsaidov, U. M., Zheng, H., Casana, Y. and Matsudaira, P., Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 102 (2012), L15L17.CrossRefGoogle Scholar
Evans, J. E. and Browning, N. D., Enabling direct nanoscale observations of biological reactions with dynamic TEM. Microscopy, 62 (2013), 147156.CrossRefGoogle ScholarPubMed
Jungjohann, K. L., Bliznakov, S., Sutter, P. W., Stach, E. A. and Sutter, E. A., In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett., 13 (2013), 29642970.CrossRefGoogle ScholarPubMed
Lowenstam, H. A. and Weiner, S., On Biomineralization (New York: Oxford University Press, 1989).CrossRefGoogle Scholar
Benzerara, K., Skouri-Panet, F., Li, J. H. et al., Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc. Natl. Acad. Sci. USA, 111 (2014), 1093310938.CrossRefGoogle ScholarPubMed
Bazylinski, D. A., Synthesis of the bacterial magnetosome: the making of a magnetic personality. Int. Microbiol, 2 (1999), 7180.Google ScholarPubMed
Sumper, M. and Brunner, E., Learning from diatoms: nature’s tools for the production of nanostructured silica. Adv. Funct. Mater., 16 (2006), 1726.CrossRefGoogle Scholar
Woehl, T. J., Kashyap, S., Firlar, E. et al., Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Sci. Rep., 4 (2014), 6854.CrossRefGoogle ScholarPubMed
Arakaki, A., Webb, J. and Matsunaga, T., A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem., 278 (2003), 87458750.CrossRefGoogle ScholarPubMed
Poulsen, N., Sumper, M. and Kroger, N., Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Natl. Acad. Sci. USA, 100 (2003), 1207512080.CrossRefGoogle ScholarPubMed
Prozorov, T., Bazylinski, D. A., Mallapragada, S. K. and Prozorov, R., Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review. Mater. Sci. Eng. R., 74 (2013), 133172.CrossRefGoogle Scholar
Lang, C. and Schueler, D., Biomineralization of magnetosomes in bacteria: nanoparticles with potential applications. In Rehm, B., ed., Microbial Bionanotechnology (Wymondham, UK: Horizon Bioscience, 2006) pp. 107124.Google Scholar
Prozorov, T., Palo, P., Wang, L. et al., Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano, 1 (2007), 228233.CrossRefGoogle ScholarPubMed
Colfen, H. and Antonietti, M., Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed., 44 (2005), 55765591.CrossRefGoogle ScholarPubMed
Bazylinski, D. A., Garrattreed, A. J. and Frankel, R. B., Electron-microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech., 27 (1994), 389401.CrossRefGoogle ScholarPubMed
Komeili, A., Li, Z., Newmana, D. K. and Jensen, G. J., Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science, 311 (2006), 242245.CrossRefGoogle ScholarPubMed
Pouget, E. M., Bomans, P. H. H., Goos, J. et al., The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science, 323 (2009), 14551458.CrossRefGoogle ScholarPubMed
Bazylinski, D. A. and Frankel, R. B., Magnetosome formation in prokaryotes. Nat. Rev. Micro., 2 (2004), 217230.CrossRefGoogle ScholarPubMed
Faivre, D. and Schüler, D., Magnetotactic bacteria and magnetosomes. Chem. Rev., 108 (2008), 48754898.CrossRefGoogle ScholarPubMed
Prozorov, T., Mallapragada, S. K., Narasimhan, B. et al., Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater., 17 (2007), 951957.CrossRefGoogle Scholar
Epp, E. R., Weiss, H. and Santomasso, A., The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Rad. Res., 34 (1968), 320325.CrossRefGoogle ScholarPubMed
Komeili, A., Vali, H., Beveridge, T. J. and Newman, D. K., Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl. Acad. Sci. USA, 101 (2004), 38393844.CrossRefGoogle ScholarPubMed
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.CrossRefGoogle ScholarPubMed
Kashyap, S., Woehl, T. J., Liu, X., Mallapragada, S. K. and Prozorov, T., Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ. ACS Nano, 8 (2014), 90979106.CrossRefGoogle ScholarPubMed
ISO/ASTM51540-09, USA, 2009. Standard Practices for Use of Radiochromic Liquid Dosimetry System, ASTM International, West Conshohocken, PA, USA.Google Scholar
Fiester, S. E., Helfinstine, S. L., Redfearn, J. C., Uribe, R. M. and Woolverton, C. J., Electron beam irradiation dose dependently damages the Bacillus spore coat and spore membrane. Int. J. Microbiol. (2012), 579593.CrossRefGoogle Scholar
Ward, G. D., Watson, I. A., Stewart-Tull, D. E. et al., Bactericidal action of high-power Nd:YAG laser light on Escherichia coli in saline suspension. J. Appl. Microbiol., 89 (2000), 517525.CrossRefGoogle ScholarPubMed
Nandakumar, K., Obika, H., Utsumi, A., Ooie, T. and Yano, T., Molecular level damages of low power pulsed laser radiation in a marine bacterium Pseudoalteromonas carrageenovora. Lett. Appl. Microbiol., 42 (2006), 521526.CrossRefGoogle Scholar
Tuszyn’ski, J. A., Portet, S., Dixon, J. M., Luxford, C. and Cantiello, H. F., Ionic wave propagation along actin filaments. Biophys. J., 86 (2004), 18901903.CrossRefGoogle Scholar
Cantiello, H. F., Patenaude, C. and Zaner, K., Osmotically induced electrical signals from actin filaments. Biophys. J., 59 (1991), 12841289.CrossRefGoogle ScholarPubMed
Merla, C., Paffi, A., Apollonio, F. et al., Microdosimetry for nanosecond pulsed electric field applications: a parametric study for a single cell. IEEE Trans. Biomed. Eng., 58 (2011), 12941302.CrossRefGoogle Scholar
Cowley, J. M., Twenty forms of electron holography. Ultramicroscopy, 41 (1992), 335348.CrossRefGoogle Scholar
Formanek, P., Lenk, A., Lichte, H. et al., Electron holography: applications to materials questions. Annu. Rev. Mater. Res., 37 (2007), 539588.Google Scholar
Dunin-Borkowski, R. E., McCartney, M. R., Kardynal, B. et al., Off-axis electron holography of exchange-biased CoFe/FeMn patterned nanostructures. J Appl. Phys., 90 (2001), 28992902.CrossRefGoogle Scholar
Simon, P., Lichte, H., Formanek, P. et al., Electron holography of biological samples. Micron, 39 (2008), 229256.CrossRefGoogle ScholarPubMed
Dunin-Borkowski, R. E., McCartney, M. R., Posfai, M. et al., Off-axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1. Eur. J. Mineral., 13 (2001), 671684.CrossRefGoogle Scholar
Kasama, T., Posfai, M., Chong, R. K. K. et al., Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral., 91 (2006), 12161229.CrossRefGoogle Scholar
Simpson, E. T., Kasama, T., Posfai, M. et al., Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography. J. Phys. Conf. Ser., 17 (2005), 108121.CrossRefGoogle Scholar
Longchamp, J. N., Latychevskaia, T., Escher, C. and Fink, H. W., Non-destructive imaging of an individual protein. Appl. Phys. Lett., 101 (2012), 093701.CrossRefGoogle Scholar
Kawasaki, T., Endo, J., Matsuda, T., Osakabe, N. and Tonomura, A., Applications of holographic interference electron microscopy to the observation of biological specimens. J. Electron Microsc., 35 (1986), 211214.Google Scholar
Pan, Y.-H., Sader, K., Powell, J. J. et al., 3D morphology of the human hepatic ferritin mineral core: new evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images. J. Struct. Biol., 166 (2009), 2231.CrossRefGoogle ScholarPubMed
Lichte, H., Banzhof, H. and Huhle, R., Limitations in electron holography of magnetic microstructures. Proc. Int. Congr. Electr. Microsc., ICEM 14, Cancun, Mexico (1998), pp. 559–560.Google Scholar
Krack, M., Hohenberg, H., Kornowski, A. et al., Nanoparticle-loaded magnetophoretic vesicles. J. Am. Chem. Soc., 130 (2008), 73157320.CrossRefGoogle ScholarPubMed
Hopster, H. and Oepen, H. P. (eds.), Magnetic Microscopy of Nanostructures (Berlin: Springer, 2005).CrossRefGoogle Scholar
Eggeman, A. S., Petford-Long, A. K., Dobson, P. J. et al., Synthesis and characterization of silica encapsulated cobalt nanoparticles and nanoparticle chains. J. Magn. Magn. Mater., 301 (2006), 336342.CrossRefGoogle Scholar
Tanase, M. and Petford-Long, A. K., In situ TEM observation of magnetic materials. Microsc. Res. Tech., 72 (2009), 187196.CrossRefGoogle ScholarPubMed
Campbell, G. H., LaGrange, T. B., King, W. E. et al., The HCP to BCC phase transformation in Ti characterized by nanosecond electron microscopy. Solid-Solid Phase Transform. Inorg. Mater. 2005, Proc. Int. Conf., 2 (2005) 443–448.Google Scholar
Pankhurst, Q. A., Connolly, J., Jones, S. K. and Dobson, J., Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys., 36 (2003), R167R181.CrossRefGoogle Scholar
Reiss, G. and Huetten, A., Magnetic nanoparticles: applications beyond data storage. Nat. Mater., 4 (2005), 725726.CrossRefGoogle ScholarPubMed
Förster, S., Amphiphilic block copolymers for templating applications. Top. Curr. Chem., 226 (2003), 128.CrossRefGoogle Scholar
Prozorov, T., Unpublished, 2013.CrossRefGoogle Scholar
Zhang, L., Song, S. I., Zheng, S. et al., Nontoxic poly(ethylene oxide phosphonamidate) hydrogels as templates for biomimetic mineralization of calcium carbonate and hydroxyapatite architectures. J. Mater. Sci., 48 (2013), 288298.CrossRefGoogle Scholar
Dobrunz, D., Toma, A. C., Tanner, P., Pfohl, T. and Palivan, C. G., Polymer nanoreactors with dual functionality: simultaneous detoxification of peroxynitrite and oxygen transport. Langmuir, 28 (2012), 1588915899.CrossRefGoogle ScholarPubMed
Tanner, P., Baumann, P., Enea, R. et al., Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res., 44 (2011), 10391049.CrossRefGoogle ScholarPubMed
Goswami, N., Saha, R. and Pal, S. K., Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule. J. Nanopart. Res., 13 (2011), 54855495.CrossRefGoogle Scholar
Vriezema, D. M., Aragones, M. C., Elemans, J. A. A. W. et al., Self-assembled nanoreactors, Chem. Rev., 105 (2005), 14451489.CrossRefGoogle ScholarPubMed
Kashyap, S., Woehl, T., Valverde-Tercedor, C. et al., Visualization of iron-binding micelles in acidic recombinant biomineralization protein, MamC. J. Nanomater. (2014), 320124.CrossRefGoogle Scholar
Karlin, D. and Belshaw, R., Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins. PLoS One, 7 (2012), e31719.CrossRefGoogle ScholarPubMed
Heyman, A., Medalsy, I., Bet Or, O. et al., Protein scaffold engineering towards tunable surface attachment. Angew. Chem. Int. Ed., 48 (2009), 92909294.CrossRefGoogle ScholarPubMed
Ghosh, P. S. and Hamilton, A. D., Noncovalent template-assisted mimicry of multiloop protein surfaces: assembling discontinuous and functional domains. J. Am. Chem. Soc., 134 (2012), 1320813211.CrossRefGoogle ScholarPubMed
Diao, J., Crystal structure of a super leucine zipper, an extended two-stranded super long coiled coil. Protein Sci., 19 (2010), 319326.CrossRefGoogle ScholarPubMed
Dedeo, M. T., Duderstadt, K. E., Berger, J. M. and Francis, M. B., Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus. Nano Lett., 10 (2010), 181186.CrossRefGoogle ScholarPubMed
Aniagyei, S. E., DuFort, C., Kao, C. C. and Dragnea, B., Self-assembly approaches to nanomaterial encapsulation in viral protein cages. J. Mater. Chem., 18 (2008), 37633774.CrossRefGoogle ScholarPubMed
Sun, J., DuFort, C., Daniel, M.-C. et al., Core-controlled polymorphism in virus-like particles. Proc. Natl. Acad. Sci. USA, 104 (2007), 13541359.CrossRefGoogle ScholarPubMed
Vatta, L. L., Sanderson, R. D. and Koch, K. R., Magnetic nanoparticles: properties and potential applications. Pure Appl. Chem., 78 (2006), 17931801.CrossRefGoogle Scholar
Ai, H., Flask, C., Weinberg, B. et al., Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater., 17 (2005), 19491952.CrossRefGoogle Scholar
Berry, C. C. and Curtis, A. S. G., Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys., 36 (2003), R198R206.CrossRefGoogle Scholar
Chiancone, E., Ceci, P., Ilari, A., Ribacchi, F. and Stefanini, S., Iron and proteins for iron storage and detoxification. BioMetals, 17 (2004), 197202.CrossRefGoogle ScholarPubMed
Busch, A. P., Rhinow, D., Yang, F. et al., Site-selective biomineralization of native biological membranes. J. Mater. Chem. B, 2 (2014), 69246930.CrossRefGoogle ScholarPubMed
Baumgartner, J., Morin, G., Menguy, N. et al., Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates. Proc. Natl. Acad. Sci. USA, 110 (2013), 1488314888.CrossRefGoogle ScholarPubMed
Baumgartner, J. and Faivre, D., Magnetite biomineralization in bacteria. Prog. Mol. Subcell. Biol., 52 (2011), 327.CrossRefGoogle ScholarPubMed
Penn, R. L. and Banfield, J. F., Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 281 (1998), 969971.CrossRefGoogle ScholarPubMed
Gao, B., Arya, G. and Tao, A. R., Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat. Nanotechnol., 7 (2012), 433437.CrossRefGoogle ScholarPubMed
Nakagawa, Y., Kageyama, H., Oaki, Y. and Imai, H., Direction control of oriented self-assembly for 1D, 2D, and 3D microarrays of anisotropic rectangular nanoblocks. J. Am. Chem. Soc., 136 (2014), 37163719.CrossRefGoogle ScholarPubMed
Song, R. Q. and Colfen, H., Mesocrystals-ordered nanoparticle superstructures. Adv. Mater., 22 (2010), 13011330.CrossRefGoogle ScholarPubMed
Sun, B. L., Wen, M., Wu, Q. S. and Peng, J., Oriented growth and assembly of Ag@C@Co pentagonalprism nanocables and their highly active selected catalysis along the edges for dehydrogenation. Adv. Funct. Mater., 22 (2012), 28602866.CrossRefGoogle Scholar
Ihli, J., Bots, P., Kulak, A., Benning, L. G. and Meldrum, F. C., Elucidating mechanisms of diffusion-based calcium carbonate synthesis leads to controlled mesocrystal formation. Adv. Funct. Mater., 23 (2013), 19651973.CrossRefGoogle Scholar
Niederberger, M. and Colfen, H., Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys., 8 (2006), 32713287.CrossRefGoogle ScholarPubMed
Frandsen, C., Legg, B. A., Comolli, L. R. et al., Aggregation-induced growth and transformation of beta-FeOOH nanorods to micron-sized alpha-Fe2O3 spindles. CrystEngComm, 16 (2014), 14511458.CrossRefGoogle Scholar
Wang, Y., DePrince, A. E., Gray, S. K., Lin, X. M. and Pelton, M., Solvent-mediated end-to-end assembly of gold nanorods. J. Phys. Chem. Lett., 1 (2010), 26922698.CrossRefGoogle ScholarPubMed
Colfen, H. and Antonietti, M., Mesocrystals and Nonclassical Crystallization (Chichester, UK: Wiley, 2008).CrossRefGoogle Scholar
Woehl, T. J. and Prozorov, T., The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J. Phys. Chem. C, 119 (2015), 2126121269.CrossRefGoogle Scholar
Burrows, N. D., Hale, C. R. H. and Penn, R. L., Effect of ionic strength on the kinetics of crystal growth by oriented aggregation. Cryst. Growth Des., 12 (2012), 47874797.CrossRefGoogle Scholar
Penn, R. L. and Soltis, J. A., Characterizing crystal growth by oriented aggregation. CrystEngComm, 16 (2014), 14091418.CrossRefGoogle Scholar
Ahmed, W., Laarman, R. P. B., Hellenthal, C. et al., Dipole directed ring assembly of Ni-coated Au-nanorods. Chem. Commun., 46 (2010), 67116713.CrossRefGoogle ScholarPubMed
Chai, J., Liao, X., Giam, L. R. and Mirkin, C. A., Nanoreactors for studying single nanoparticle coarsening. J. Am. Chem. Soc., 134 (2012), 158161.CrossRefGoogle ScholarPubMed
Yang, M. X., Chen, G., Zhao, Y. F. et al., Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Phys. Chem. Chem. Phys., 12 (2010), 1185011860.CrossRefGoogle ScholarPubMed
Park, J., Zheng, H., Lee, W. C. et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.CrossRefGoogle ScholarPubMed
Park, C., Woehl, T. J., Evans, J. E. and Browning, N. D., Minimum cost multi-way data association for optimizing multitarget tracking of interacting objects, pattern analysis and machine intelligence. IEEE Trans. Pattern Anal. Mach. Intell., 37 (2014), 611624.CrossRefGoogle Scholar
Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.CrossRefGoogle ScholarPubMed
Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.CrossRefGoogle ScholarPubMed
Liao, H. G., Zherebetskyy, D., Xin, H. L. et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Prospects
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Prospects
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Prospects
  • Edited by Frances M. Ross, IBM T. J. Watson Research Center, New York
  • Book: Liquid Cell Electron Microscopy
  • Online publication: 22 December 2016
Available formats
×