Published online by Cambridge University Press: 13 June 2025
This chapter discusses more specialized examples on how machine learning can be used to solve problems in quantum sciences. We start by explaining the concept of differentiable programming and its use cases in quantum sciences. Next, we describe deep generative models, which have proven to be an extremely appealing tool for sampling from unknown target distributions in domains ranging from high-energy physics to quantum chemistry. Finally, we describe selected machine learning applications for experimental setups such as ultracold systems or quantum dots. In particular, we show how machine learning can help in tedious and repetitive experimental tasks in quantum devices or in validating quantum simulators with Hamiltonian learning.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.