Skip to main content Accessibility help
×
Hostname: page-component-7dd5485656-g8tfn Total loading time: 0 Render date: 2025-11-02T13:08:31.379Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 October 2025

Yuan Xu
Affiliation:
University of Oregon
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Minimal Cubature Rules
Theory and Practice
, pp. 248 - 257
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

[1] Abramowitz, M., and Stegun, I. (1970). Handbook of Mathematical Functions. New York: Dover.Google Scholar
[2] Agahanov, S. A. (1965). A method of constructing orthogonal polynomials of two variables for a certain class of weight functions. Vestnik Leningrad Univ. 20, 510.Google Scholar
[3] Alexandersson, P., and Shapiro, B. (2014). Around multivariate Schmidt-Spitzer theorem. Linear Alg. Appl., 446, 356368.10.1016/j.laa.2014.01.005CrossRefGoogle Scholar
[4] Andrews, G. E., Askey, A. and Roy, R. (1999). Special Functions, Encyclopedia of Mathematics and its Applications 71. Cambridge: Cambridge University Press.Google Scholar
[5] Bannai, E., and Bannai, E. (2009). A survey on spherical designs and algebraic combinatorics on spheres. European J. Comb. 30, 13921425.10.1016/j.ejc.2008.11.007CrossRefGoogle Scholar
[6] Baran, M. (1995). Complex equilibrium measure and Bernstein type theorems for compact sets in ℝn. Proc. Amer. Math. Soc. 123, 485494.Google Scholar
[7] Bacry, H. (1986). Zeros of polynomials and generalized Chebyshev polynomials. In Group-Theoretic Methods in Physics, Vol. 2 (Russian) (Jurmala, 1985), 239–249, Moscow: “Nauka”.Google Scholar
[8] Bayer, C., and Teichmann, J. (2006). The proof of Tchakaloff’s theorem. Proc. Amer. Math. Soc. 134, 30353040.10.1090/S0002-9939-06-08249-9CrossRefGoogle Scholar
[9] Bedford, E., and Taylor, B. A. (1986). The complex equilibrium measure of a symmetric convex set in ℝn. Trans. Amer. Math. Soc. 294, 705717.Google Scholar
[10] Beerends, R. J. (1991). Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator. Trans. Amer. Math. Soc. 328, 779814.10.1090/S0002-9947-1991-1019520-3CrossRefGoogle Scholar
[11] Berens, H., and Schmid, H. J. (1992). On the number of nodes of odd degree cubature formulae for integrals with Jacobi weights on a simplex. In Numerical Integration, ed., Espelid, T. O. and Genz, A., 3744. Dordrecht: Kluwer Academic Publishers.10.1007/978-94-011-2646-5_3CrossRefGoogle Scholar
[12] Berens, H., Schmid, H. J. and Xu, Y. (1995a). Multivariate Gaussian cubature formula. Arch. Math. 64, 2632.10.1007/BF01193547CrossRefGoogle Scholar
[13] Berens, H., Schmid, H. J. and Xu, Y. (1995b). On two-dimensional definite orthogonal systems and a lower bound for the number of nodes of associated cubature formulae. SIAM J. Math. Anal. 26, 468487.10.1137/S0036141092229860CrossRefGoogle Scholar
[14] Bojanov, B., and Petrova, G. (1997). On minimal cubature formulae for product weight function. J. Comput. Appl. Math. 85, 113121.10.1016/S0377-0427(97)00133-7CrossRefGoogle Scholar
[15] Bondarenko, A., Radchenko, D. and Viazovska, M. (2013). Optimal asymptotic bounds for spherical designs. Ann. Math. 178, 443452.10.4007/annals.2013.178.2.2CrossRefGoogle Scholar
[16] Bos, L., De Marchi, S. and Vianello, M. (2006). On the Lebesgue constant for the Xu interpolation formula. J. Approx. Theory 141, 134141.10.1016/j.jat.2006.01.005CrossRefGoogle Scholar
[17] Bos, L., De Marchi, S. and Vianello, M. (2017). Trivariate polynomial approximation on Lissajous curves. IMA J. Numer. Anal. 37, 519541.10.1093/imanum/drw013CrossRefGoogle Scholar
[18] Bos, L., De Marchi, S., Vianello, M. and Xu, Y. (2006). Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143, 1525.10.1016/j.jat.2006.03.008CrossRefGoogle Scholar
[19] Bos, L., De Marchi, S., Vianello, M. and Xu, Y. (2007). Bivariate Lagrange interpolation at the Padua points: the ideal theory approach. Numer. Math. 108, 4357.10.1007/s00211-007-0112-zCrossRefGoogle Scholar
[20] Brass, H., and Petras, K. (2011). Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. Mathematical Surveys and Monographs, Vol. 178. Providence: American Mathematics Society.Google Scholar
[21] Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods. In Acta Numerica, Vol. 7, 149. Cambridge: Cambridge University Press.10.1017/S0962492900002804CrossRefGoogle Scholar
[22] Caliari, M., De Marchi, S. and Vianello, M. (2005). Bivariate polynomial interpolation on the square at new nodal sets. Appl. Math. Comput. 165, 261274.Google Scholar
[23] Cao, L., Ghimire, S. and Wang, X. S. (2022). Bivariate Lagrange interpolation at the checkerboard nodes. Proc. Amer. Math. Soc. 150, 21532163.Google Scholar
[24] Chihara, T. S. (1978). An Introduction to Orthogonal Polynomials. Mathematics and Its Applications, Vol. 13. London: Gordon & Breach Science Publishers.Google Scholar
[25] Conway, J. H., and Sloane, N. J. A. (1998). Sphere Packings, Lattices and Groups, 3rd ed. New York: Springer.Google Scholar
[26] Cools, R. (1997). Constructing cubature formulae: the science behind the art. Acta Numerica 6, 154.10.1017/S0962492900002701CrossRefGoogle Scholar
[27] Cools, R. (1999). Monomial cubature rules since “Stroud”: a compilation – part 2. J. Comput. Appl. Math. 112, 2127.10.1016/S0377-0427(99)00229-0CrossRefGoogle Scholar
[28] Cools, R. (2003). An encyclopedia of cubature formulas. J. Complexity 19, 445453. nines.cs.kuleuven.be/ecf.10.1016/S0885-064X(03)00011-6CrossRefGoogle Scholar
[29] Cools, R., and Poppe, K. (2011). Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function. BIT Numer. Math. 51, 275288.10.1007/s10543-010-0300-6CrossRefGoogle Scholar
[30] Cools, R., and Rabinowitz, P. (1993). Monomial cubature rules since “Stroud”: a compilation. J. Comput. Appl. Math. 48, 309326.10.1016/0377-0427(93)90027-9CrossRefGoogle Scholar
[31] Cools, R., and Schmid, H. (1989). Minimal cubature formulae of degree 2k – 1 for two classical functionals. Computing 43, 141157.10.1007/BF02241858CrossRefGoogle Scholar
[32] Cools, R., and Schmid, H. J. (1993). A new lower bound for the number of nodes in cubature formulae of degree 4n + 1 for some circularly symmetric integrals. In Numerical Integration, IV (Oberwolfach, 1992), eds., Brass, H. and Hämmerlin, G., Vol. 12 of Internat. Ser. Numer. Math., 5766. Basel: Birkhäuser.Google Scholar
[33] Cox, D., Little, J. and O’Shea, D. (1997). Ideals, Varieties, and Algorithms, 2nd ed., Berlin: Springer.Google Scholar
[34] Curto, R. E., and Fialkow, L. A. (2002). A duality proof of Tchakoloff’s theorem. J. Math. Anal. Appl. 269, 519532.10.1016/S0022-247X(02)00034-3CrossRefGoogle Scholar
[35] Dai, F., and Xu, Y. (2013). Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. New York: Springer.Google Scholar
[36] Davis, P. J., and Rabinowitz, P. (2007) Methods of Numerical Integration. Corrected reprint of the second (1984) edition. New York: Dover.Google Scholar
[37] Della Vecchia, B., Mastroianni, G. and Vértesi, P. (2009). Exact order of the Lebesgue constants for bivariate Lagrange interpolation at certain node-systems. Studia Sci. Math. Hungar. 46, 97102.Google Scholar
[38] Delsarte, P., Goethals, J. M. and Seidel, J. (1977). Spherical codes and designs. Geom. Dedicata 6, 363388.10.1007/BF03187604CrossRefGoogle Scholar
[39] De Marchi, S., Vianello, M. and Xu, Y. (2009). New cubature formulae and hyperinterpolation in three variables. BIT Numer. Math. 49 (2009), 5573.10.1007/s10543-009-0210-7CrossRefGoogle Scholar
[40] Dencker, P., and Erb, W. (2017). Multivariate polynomial interpolation on Lissajous-Chebyshev nodes. J. Approx. Theory 219, 1545.10.1016/j.jat.2017.03.003CrossRefGoogle Scholar
[41] Dick, J., Kuo, F. Y. and Sloan, I. H. (2013). High-dimensional integration: the quasi-Monte Carlo way. Acta Numerica 22, 133288.10.1017/S0962492913000044CrossRefGoogle Scholar
[42] Dick, J., and Pillichshammer, F. (2010). Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge: Cambridge University Press.10.1017/CBO9780511761188CrossRefGoogle Scholar
[43] van Diejen, J. F., and Emsiz, E. (2019). Exact cubature rules for symmetric functions. Math. Comp. 88, 12291249.10.1090/mcom/3380CrossRefGoogle Scholar
[44] van Diejen, J. F., and Emsiz, E. (2021). Cubature rules from Hall-Littlewood polynomials. IMA J. Numer. Anal. 41, 9981030.10.1093/imanum/draa011CrossRefGoogle Scholar
[45] Dudgeon, D., and Mersereau, R. M. (1984). Multidimensional Digital Signal Processing. Englewood Cliffs: Prentice Hall.Google Scholar
[46] Dunavant, D. A. (1985). High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21, 11291148.10.1002/nme.1620210612CrossRefGoogle Scholar
[47] Dunkl, C. F., and Xu, Y. (2014) Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications, Vol. 155, Cambridge: Cambridge University Press.10.1017/CBO9781107786134CrossRefGoogle Scholar
[48] Dunn, K. B., and Lidl, R. (1980). Multi-dimensional generalizations of the Chebyshev polynomials. I, II. Proc. Japan Acad. 56, 154165.Google Scholar
[49] Eier, R., and Lidl, R. (1982). A class of orthogonal polynomials in k variables. Math. Ann. 260, 9399.10.1007/BF01475757CrossRefGoogle Scholar
[50] Engels, H. (1980). Numerical Quadrature and Cubature. London-New York: Academic Press.Google Scholar
[51] Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, G. (1981). Higher Transcendental Functions. Vol. II. Based on notes left by Harry Bateman. Reprint of the 1953 original. Melbourne: Robert E. Krieger Publishing Co.Google Scholar
[52] Fedorov, E. S. (1953). Elements of the study of figures (Russian). Zap. Mineral. Imper. S. Peters-burgskogo Obsc. 21 (1885), 1279. Izdat. Akad. Nauk SSSR.Google Scholar
[53] Förster, K., and Petras, K. (1990). On estimates for the weights in Gaussian quadrature in the ultraspherical case. Math. Comp. 55, 243264.10.1090/S0025-5718-1990-1023758-1CrossRefGoogle Scholar
[54] Fuglede, B. (1974). Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101121.10.1016/0022-1236(74)90072-XCrossRefGoogle Scholar
[55] Gautschi, W. (2004). Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. New York: Oxford University Press.Google Scholar
[56] Gautschi, W. (2021). A Software Repository for Gaussian Quadratures and Christoffel Functions. Philadelphia: Society for Industrial and Applied Mathematics (SIAM).Google Scholar
[57] Grundmann, A., and Möller, H. M. (1978). Invariant integration formulas for the n-simplex by combinatorial methods. SIAM. J. Numer. Anal., 15, 282290.10.1137/0715019CrossRefGoogle Scholar
[58] Hardin, R. H., and Sloane, N. J. A. (1996). McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete and Comp. Geometry. 15, 429441.10.1007/BF02711518CrossRefGoogle Scholar
[59] Harris, L. (2015). Lagrange polynomials, reproducing kernels and cubature in two dimensions. J. Approx. Theory 195, 4356.10.1016/j.jat.2014.10.017CrossRefGoogle Scholar
[60] Harris, L., and Simanek, B. (2021). Interpolation and cubature for rectangular sets of nodes. Proc. Amer. Math. Soc. 149, 34853497.10.1090/proc/15414CrossRefGoogle Scholar
[61] Helenbrook, B. T. (2009). On the existence of explicit hp-finite element method using Gauss-Lobatto integration on the triangle. SIAM J. Numer. Anal. 47, 13041318.10.1137/070685439CrossRefGoogle Scholar
[62] Heo, S., and Xu, Y. (2000). Invariant cubature formulae for spheres and balls by combinatorial methods. SIAM J. Numer. Anal., 38 (2000), 626638.CrossRefGoogle Scholar
[63] Heo, S., and Xu, Y. (2001). Constructing fully symmetric cubature formulae for the sphere. Math. Comp. 70, 269279.10.1090/S0025-5718-00-01198-4CrossRefGoogle Scholar
[64] Higgins, J. R. (1996). Sampling Theory in Fourier and Signal Analysis, Foundations. New York: Oxford Science Publications.10.1093/oso/9780198596998.001.0001CrossRefGoogle Scholar
[65] Hinrichs, A., and Novak, E. (2007). Cubature formulas for symmetric measures in higher dimensions with few points. Math. Comp. 76, 13571372.10.1090/S0025-5718-07-01974-6CrossRefGoogle Scholar
[66] Hubert, E., Metzlaff, T., and Riener, C. (2024) Orbit spaces of Weyl groups acting on compact tori: a unified and explicit polynomial description. SIAM J. Appl. Algebra & Geometry 8, 612649.10.1137/23M158173XCrossRefGoogle Scholar
[67] Masatake, H., Nozaki, H., Sawa, M., and Vesselin, V. (2012). A new approach for the existence problem of minimal cubature formulas based on the Larman-Rogers-Seidel theorem. SIAM J. Numer. Anal. 50, 27162728.Google Scholar
[68] Hirao, M., and Sawa, M. (2009). On minimal cubature formulae of small degree for spherically symmetric integrals. SIAM J. Numer. Anal. 47, 31953211.10.1137/070711207CrossRefGoogle Scholar
[69] Horn, R. A., and Johnson, C. R. (1985). Matrix Analysis. Cambridge: Cambridge University Press.10.1017/CBO9780511810817CrossRefGoogle Scholar
[70] Hrivnák, J., and Motlochová, L. (2014). Discrete transforms and orthogonal polynomials of (anti)symmetric multivariate cosine functions. SIAM J. Numer. Anal. 52, 30213055.10.1137/140964916CrossRefGoogle Scholar
[71] Hrivnák, J., Motlochová, L. and Patera, J. (2016). Cubature formulas of multivariate polynomials arising from symmetric orbit functions. Symmetry 8, no. 7, Art. 63., 22 pp.10.3390/sym8070063CrossRefGoogle Scholar
[72] Iosevich, A., Katz, N., and Tao, T. (2003). The Fuglede spectral conjecture holds for convex planar domains. Math. Res. Lett. 10, 559569.10.4310/MRL.2003.v10.n5.a1CrossRefGoogle Scholar
[73] Ismail, M. (2005). Classical and Quantum Orthogonal Polynomials in One Variable. With two chapters by Walter Van Assche. With a foreword by Richard A. Askey. Encyclopedia of Mathematics and its Applications, 98. Cambridge: Cambridge University Press.Google Scholar
[74] Jaśkowiec, J., and Sukumar, N. (2020). High-order cubature rules for tetrahedra. Int. J. Numer. Methods Eng. 121, 24182436.10.1002/nme.6313CrossRefGoogle Scholar
[75] Keast, P. (1986). Moderate degree tetrahedral quadrature formulas, Comput. Methods Appl. Mech. Engrg. 55, 339348.10.1016/0045-7825(86)90059-9CrossRefGoogle Scholar
[76] Klimyk, A., and Patera, J. (2006). Orbit functions, Symmetry Integrability Geom. Methods Appl. 2, Paper 006, 60pp.Google Scholar
[77] Klimyk, A., and Patera, J. (2007) Antisymmetric orbit functions, SIGMA Symmetry Integrability Geom. Methods Appl. 3, Paper 023, 83 pp.Google Scholar
[78] Kolountzakis, M. N. (2004). The study of translational tiling with Fourier analysis. In Fourier Analysis and Convexity, Appl. Numer. Harmon. Anal., pp. 131–187. Boston: Birkhäuser.Google Scholar
[79] Koornwinder, T. (1974a). Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I, II. Indag. Math. 36, 48–58, 5966.10.1016/1385-7258(74)90014-6CrossRefGoogle Scholar
[80] Koornwinder, T. (1974b). Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III, IV. Indag. Math. 36, 357–369, 370381.10.1016/1385-7258(74)90027-4CrossRefGoogle Scholar
[81] Koornwinder, T. (1975). Two-variable analogues of the classical orthogonal polynomials, In Theory and Applications of Special Functions. ed. Askey, R.A.. New York-London: Academic Press.Google Scholar
[82] Krasikov, I. (2006). On extreme zeros of classical orthogonal polynomials. J. Comput. Appl. Math. 193, 168182.10.1016/j.cam.2005.05.029CrossRefGoogle Scholar
[83] Korevaar, J., and Meyers, J. L. H. (1994). Chebyshev-type quadrature on multidimensional domains. J. Approx. Theory 79, 144164.10.1006/jath.1994.1119CrossRefGoogle Scholar
[84] Lasserre, J. B. (2012). The existence of Gaussian cubature formulas. J. Approx. Theory 164, 572585.10.1016/j.jat.2012.01.004CrossRefGoogle Scholar
[85] Larcher, H. (1959). Notes on orthogonal polynomials in two variables. Proc. Amer. Math. Soc. 10, 417423.10.1090/S0002-9939-1959-0119006-1CrossRefGoogle Scholar
[86] Lebedev, V. I. (1977). Spherical quadrature formulas exact to orders 25-29. Siberian Math. J. 18, 99107.10.1007/BF00966954CrossRefGoogle Scholar
[87] Lebedev, V. I., and Lauikov, D. N. (1999). A quadrature formula for a sphere of the 131st algebraic order of accuracy. (Russian) Dokl. Akad. Nauk. 366, 741745.Google Scholar
[88] Lebedev, V. I., and Skorokhodov, A. L. (1992). Quadrature formulas for a sphere of orders 41,47 and 53. (Russian) Dokl. Akad. Nauk 324, 519–524; translation in Russian Acad. Sci. Dokl. Math. 45, 587–592 (1993).Google Scholar
[89] Lev, N., and Matolcsi, M., (2022). The Fuglede conjecture for convex domains is true in all dimensions. Acta Math. 228, 385420.10.4310/ACTA.2022.v228.n2.a3CrossRefGoogle Scholar
[90] Levenberg, N. (2006). Approximation in ℂN. Surveys in Approx. Theory 2, 92140.Google Scholar
[91] Levenshtein, V. I. (1983). Bounds for packings of metric spaces and some of their applications. (Russian) Problemy Kibernet. 40, 43110.Google Scholar
[92] Li, H., and Xu, Y. (2009). Discrete Fourier analysis on a dodecahedron and a tetrahedron. Math. Comp. 78, 9991029.10.1090/S0025-5718-08-02156-XCrossRefGoogle Scholar
[93] Li, H., and Xu, Y. (2010). Discrete Fourier analysis on fundamental domain of Ad lattice and on simplex in d-variables. J. Fourier Anal. Appl. 16, 383433.10.1007/s00041-009-9106-9CrossRefGoogle Scholar
[94] Li, H., Sun, J. and Xu, Y. (2008). Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle, SIAM J. Numer. Anal. 46, 16531681.10.1137/060671851CrossRefGoogle Scholar
[95] Li, H., Sun, J. and Xu, Y. (2009). Cubature formula and interpolation on the cubic domain. Numer. Math. Theory, Methods, Appl. 2, 119152.Google Scholar
[96] Li, H., Sun, J. and Xu, Y. (2010). Discrete Fourier analysis with lattices on planar domains. Numer. Algorithm 55, 279300.10.1007/s11075-010-9388-7CrossRefGoogle Scholar
[97] Lyness, J. N., and Jespersen, D. (1975). Moderate degree symmetric quadrature rules for the triangle. J. Inst. Math. App. 15, 1932.10.1093/imamat/15.1.19CrossRefGoogle Scholar
[98] Macdonald, I. G. (1992). Schur functions: theme and variations. Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), 539. Publ. Inst. Rech. Math. Av., 498, Strasbourg, Univ. Louis Pasteur.Google Scholar
[99] Macdonald, I. G. (1995). Symmetric Functions and Hall Polynomials, 2nd ed. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. New York: Oxford University Press.10.1093/oso/9780198534891.001.0001CrossRefGoogle Scholar
[100] Maeztu, J., and Sainz de la Maza, E. (1995). Consistent structures of invariant quadrature rules for the n-simplex. Math. Comp. 64, 11711192.Google Scholar
[101] Macaulay, F. S. (1916). The Algebraic Theory of Modular Systems. Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 19. Cambridge: Cambridge University Press.Google Scholar
[102] McMullen, P. (1980). Convex bodies which tile space by translation. Mathematika 27, 113121.10.1112/S0025579300010007CrossRefGoogle Scholar
[103] Mhaskar, H. N., Narcowich, F. J. and Ward, J. D. (2021). Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comp. 70, 11131130. (Corrigendum: Math. Comp. 71, 453–454.)10.1090/S0025-5718-00-01240-0CrossRefGoogle Scholar
[104] Moody, R. V., and Patera, J. (2011). Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups. Adv. Applied Math. 47, 509535.10.1016/j.aam.2010.11.005CrossRefGoogle Scholar
[105] Moody, R. V., Motlochová, L. and Patera, J. (2014). Gaussian cubature arising from hybrid characters of simple Lie groups. J. Fourier Anal. Appl. 20, 12571290.10.1007/s00041-014-9355-0CrossRefGoogle Scholar
[106] Möller, H. M. (1973). Polynomideale und Kubaturformeln. University of Dortmund. D.Phil. Thesis.Google Scholar
[107] Möller, H. M. (1976). Kubaturformeln mit minimaler Knotenzahl. Numer. Math. 25, 185200.10.1007/BF01462272CrossRefGoogle Scholar
[108] Möller, H. M. (1979). Lower bounds for the number of nodes in cubature formulae. In Numerical Integration, ISNM Vol. 45, ed., Hämmerlin, G.. Basel: Birkhäuser.Google Scholar
[109] Möller, H. M., and Sauer, T. (2000). H-bases for polynomial interpolation and system solving. Adv. Comput. Math. 12, 335362.10.1023/A:1018937723499CrossRefGoogle Scholar
[110] Morrow, C. R., and Patterson, T. N. L. (1978). Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal. 15, 953976.10.1137/0715062CrossRefGoogle Scholar
[111] Munthe-Kaas, H. (2006). On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A, 39, 55635584.10.1088/0305-4470/39/19/S14CrossRefGoogle Scholar
[112] Munthe-Kaas, H., Nome, M. and Ryland, B. (2013). Through the kaleidoscope: symmetries, groups and Chebyshev-approximations from a computational point of view. In Foundations of Computational Mathematics, Budapest 2011, London Math. Soc. Lecture Note Ser. 403, 188229. Cambridge: Cambridge University Press.Google Scholar
[113] Mysovskikh, I. P. (1975). On Chakalov’s theorem. USSR Comput. Math. Math. Phys. 15, 221–227. Translation of Zh. Vychisl. Mat. i Mat. Fiz. 15, 15891593.10.1016/0041-5553(75)90218-9CrossRefGoogle Scholar
[114] Mysovskikh, I. P. (1976). Numerical characteristics of orthogonal polynomials in two variables. Vestnik Leningrad Univ. Math. 3, 323332.Google Scholar
[115] Mysovskikh, I. P. (1981). Interpolatory Cubature Formulas, Moscow: “Nauka”.Google Scholar
[116] Nikolov, G. (2019). New bounds for the extreme zeros of Jacobi polynomials. Proc. Amer. Math. Soc. 147, 15411550.10.1090/proc/14370CrossRefGoogle Scholar
[117] Nikolov, G. (2023). On the extreme zeros of Jacobi polynomials. Numerical Methods and Applications, 246257. Lecture Notes in Comput. Sci., 13858. Cham: Springer.10.1007/978-3-031-32412-3_22CrossRefGoogle Scholar
[118] NIST Digital Library of Mathematical Functions. (2023). ed. Olver, F. W. J., Olde Daalhuis, A. B., Lozier, D. W., Schneider, B. I., Boisvert, R. F., Clark, C. W., Miller, B. R., Saunders, B. V., Cohl, H. S., and McClain, M. A.. https://dlmf.nist.gov/ Release 1.1.12 of 2023-12-15.Google Scholar
[119] Novak, E., and Ritter, K. (1999). Simple cubature formulas with high polynomial exactness. Constr. Approx. 15, 499522.10.1007/s003659900119CrossRefGoogle Scholar
[120] Noskov, M. V., and Schmid, H. J. (2004). On the number of nodes in n-dimensional cubature formulae of degree 5 for integrals over the ball. J. Comp. Applied Math. 169, 247254.10.1016/j.cam.2003.12.024CrossRefGoogle Scholar
[121] Nozaki, H., and Sawa, M. (2012). Note on cubature formulae and designs obtained from group orbits, Canad. J. Math. 64, 13591377.10.4153/CJM-2011-069-5CrossRefGoogle Scholar
[122] OEIS (2022). The online encyclopedia of integer sequences. Entry A001399 (https://oeis.org/A001399) and Entry A001400 (https://oeis.org/A001400).Google Scholar
[123] Papanicolopulos, S. (2016). New fully symmetric and rotationally symmetric cubature rules on the triangle using minimal orthonormal bases. J. Comp. Applied Math. 294, 3948.10.1016/j.cam.2015.08.001CrossRefGoogle Scholar
[124] Peherstoefer, F. (1981). Characterization of positive quadrature formulas. SIAM J. Math. Anal. 12, 935942.10.1137/0512079CrossRefGoogle Scholar
[125] Peherstoefer, F. (1984). Characterization of quadrature formula II. SIAM J. Math. Anal. 5, 10211030.10.1137/0515079CrossRefGoogle Scholar
[126] Peherstoefer, F. (2008). Positive quadrature formulas. III. Asymptotics of weights. Math. Comp. 77, 22412259.10.1090/S0025-5718-08-02119-4CrossRefGoogle Scholar
[127] Petrushev, P., and Xu, Y. (2008). Localized polynomial kernels and frames on the ball. Constr. Approx. 27, 121148.10.1007/s00365-007-0678-9CrossRefGoogle Scholar
[128] Pólya, G., and Szegő, G. (1976). Problems and Theorems in Analysis, Vol. II. Berlin: Springer-Verlag.10.1007/978-1-4757-6292-1CrossRefGoogle Scholar
[129] Putinar, M. (1997). A Note on Tchakaloff’s Theorem. Proc. Amer. Math. Soc. 125, 24092414.10.1090/S0002-9939-97-03862-8CrossRefGoogle Scholar
[130] Radon, J. (1948). Zur mechanischen Kubatur. Monatsh. Math. 52, 286300.10.1007/BF01525334CrossRefGoogle Scholar
[131] Saff, E., and Totik, V. (2010). Logarithmic Potentials with External Fields. Berlin: Springer.Google Scholar
[132] Sauer, T. (2000). Gröbner bases, H-bases and interpolation. Trans. Amer. Math. Soc. 353, 22932308.10.1090/S0002-9947-00-02646-5CrossRefGoogle Scholar
[133] Sauer, T. (2021). Continued Fractions and Signal Processing. Berlin: Springer.10.1007/978-3-030-84360-1CrossRefGoogle Scholar
[134] Sauer, T., and Xu, Y. (2023). Continued fractions and orthogonal polynomials in several variables. arXiv:2303.16030.Google Scholar
[135] Sawa, M., and Xu, Y. (2014). On positive cubature rules on the simplex and isometric embeddings. Math. Comp. 83, 12511277.10.1090/S0025-5718-2013-02762-7CrossRefGoogle Scholar
[136] Schlömer, N. Numerical integration (quadrature, cubature) in Python. github.com/nschloe/quadpy#triangle.Google Scholar
[137] Schmid, H. J. (1983). Interpolatorische Kubaturformeln. Diss. Math. CCXX, 1122.Google Scholar
[138] Schmid, H. J. (1989). A note on positive quadrature rules. Rocky Mountain J. Math. 19, 395404.10.1216/RMJ-1989-19-1-395CrossRefGoogle Scholar
[139] Schmid, H. J. (1995). Two-dimensional minimal cubature formulas and matrix equations. SIAM J. Matrix Anal. Appl. 16, 898921.10.1137/S0895479893252404CrossRefGoogle Scholar
[140] Schmid, H. J., and Xu, Y. (1994). On bivariate Gaussian cubature formula. Proc. Amer. Math. Soc. 122, 833841.10.1090/S0002-9939-1994-1209428-0CrossRefGoogle Scholar
[141] Shapiro, B., and Shapiro, M. (2009). On eigenvalues of rectangular matrices. Proc. Steklov Math. Inst. 267, 248255.10.1134/S0081543809040208CrossRefGoogle Scholar
[142] Sobolev, S. L. (1962). Cubature formulas on the sphere which are invariant under transformations of finite rotation groups. Dokl. Akad. Nauk SSSR 146, 310313.Google Scholar
[143] Sobolev, S. L. (1992). Cubature Formulas and Modern Analysis. An Introduction. Translated from the 1988 Russian edition. Montreux: Gordon and Breach Science Publishers.Google Scholar
[144] Sobolev, S. L., and Vaskevich, V. L. (1997). The Theory of Cubature Formulas. Translated from the 1996 Russian original and with a foreword by S. S. Kutateladze. Revised by Vaskevich. Mathematics and its Applications, 415. Dordrecht: Kluwer Academic Publishers Group.10.1007/978-94-015-8913-0CrossRefGoogle Scholar
[145] Sommariva, A. Cubature rules on the triangle (simplex). www.math.unipd.it/alvise/SETS_CUBATURE_TRIANGLE/rules_triangle.htmlGoogle Scholar
[146] Stroud, A. H. (1971). Approximate Calculation of Multiple Integrals. Englewood Cliffs: Prentice-Hall.Google Scholar
[147] Stroud, A. H., and Secrest, D. (1966). Gaussian Quadrature Formulas. Englewood Cliffs: Prentice-Hall.Google Scholar
[148] Szegő, G. (1975). Orthogonal Polynomials, 4th ed., American Mathematical Society Colloquium Publication 23. Providence: American Mathematical Society.Google Scholar
[149] Szili, L., and Vértesi, P. (2009). On multivariate projection operators. J. Approx. Theory 159, 154164.10.1016/j.jat.2008.11.014CrossRefGoogle Scholar
[150] Tao, T. (2004). Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11, 251258.10.4310/MRL.2004.v11.n2.a8CrossRefGoogle Scholar
[151] Taylor, M. A. (2008). Asymmetric cubature formulas for polynomial integration in the triangle and square. J. Comp. Appl. Math. 218, 184191.10.1016/j.cam.2007.04.050CrossRefGoogle Scholar
[152] Taylor, M. A., Wingate, B. and Bos, L. (2007). A cardinal function algorithm for computing multivariate quadrature points. SIAM J. Numer. Anal. 45, 193205.10.1137/050625801CrossRefGoogle Scholar
[153] Tchakaloff, V. (1957). Formules de cubatures mécaniques à coefficients non négatifs. (French) Bull. Sci. Math. (2) 81, 123134.Google Scholar
[154] Venkov, B. (1954). On a class of Euclidean polyhedra (Russian). Vestnik Leningrad. Univ. Ser. Mat. Fiz. Him. 9, 1131.Google Scholar
[155] Verlinden, P., and Cools, R. (1992). On cubature formulae of degree 4k + 1 attaining Möller’s lower bound for integrals with circular symmetry. Numer. Math. 61, 395407.10.1007/BF01385517CrossRefGoogle Scholar
[156] Victoir, N. (2004). Asymmetric cubature formulae with few points in high dimension for symmetric measures. SIAM J. Numer. Anal. 42, 209227.10.1137/S0036142902407952CrossRefGoogle Scholar
[157] Wandzura, S., and Xiao, H. (2003). Symmetric quadrature rules on a triangle. Comput. Math. Appl. 45, 18291840.10.1016/S0898-1221(03)90004-6CrossRefGoogle Scholar
[158] Wang, W., and Papanicolopulos, S. (2023). Explicit consistency conditions for fully symmetric cubature on the tetrahedron. Eng. Comput. 39, 40134024.10.1007/s00366-023-01845-4CrossRefGoogle Scholar
[159] Xiao, H., and Gimbutas, Z. (2010). A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput. Math. Appl. 59, 663676.10.1016/j.camwa.2009.10.027CrossRefGoogle Scholar
[160] Xu, Y. (1992). Gaussian cubature and bivariable polynomial interpolation. Math. Comp. 59, 547555.10.1090/S0025-5718-1992-1140649-8CrossRefGoogle Scholar
[161] Xu, Y. (1993). On multivariable orthogonal polynomials. SIAM J. Math. Anal. 24, 783794.10.1137/0524048CrossRefGoogle Scholar
[162] Xu, Y. (1994a). Quasi orthogonal polynomial, quadrature, and interpolation, J. Math. Anal. Appl. 182, 779799.10.1006/jmaa.1994.1121CrossRefGoogle Scholar
[163] Xu, Y. (1994b). Characterization of positive quadrature formulae. Math. Comp. 62, 703718.10.1090/S0025-5718-1994-1223234-0CrossRefGoogle Scholar
[164] Xu, Y. (1994c). Block Jacobi matrices and zeros of multivariate orthogonal polynomials. Trans. Amer. Math. Soc. 342, 855866.10.1090/S0002-9947-1994-1258289-7CrossRefGoogle Scholar
[165] Xu, Y. (1994d). On zeros of multivariate quasi-orthogonal polynomials and Gaussian cubature formulae. SIAM J. Math. Anal. 25, 9911001.10.1137/S0036141092237200CrossRefGoogle Scholar
[166] Xu, Y. (1994e). A class of bivariate orthogonal polynomials and cubature formulas. Numer. Math. 69, 233241.10.1007/s002110050089CrossRefGoogle Scholar
[167] Xu, Y. (1994f). Common Zeros of Polynomials in Several Variables and Higher Dimensional Quadrature, Pitman Research Notes in Mathematics Series. Essex: Longman.Google Scholar
[168] Xu, Y. (1995). Christoffel functions and Fourier series for multivariate orthogonal polynomials. J. Approx. Theory, 82, 205239.10.1006/jath.1995.1075CrossRefGoogle Scholar
[169] Xu, Y. (1996). Lagrange interpolation on Chebyshev points of two variables. J. Approx. Theory, 87, 220238.10.1006/jath.1996.0102CrossRefGoogle Scholar
[170] Xu, Y. (1997). On orthogonal polynomials in several variables. In Special Functions, q-Series, and Related Topics. Fields Institute Communications, Amer. Math. Soc., Providence, RI, Vol. 14, 247270.Google Scholar
[171] Xu, Y. (1998a). Orthogonal polynomials and cubature formulae on spheres and on balls. SIAM J. Math. Anal. 29, 779793.10.1137/S0036141096307357CrossRefGoogle Scholar
[172] Xu, Y. (1998b). Orthogonal polynomials and cubature formulae on spheres and on simplices, Methods Anal. Appl. 5, 169184.10.4310/MAA.1998.v5.n2.a5CrossRefGoogle Scholar
[173] Xu, Y. (1998c). Minimal Cubature formulae for a family of radial weight functions. Advances in Comp. Math. 8, 367380.10.1023/A:1018964818105CrossRefGoogle Scholar
[174] Xu, Y. (1999). Cubature formula and polynomial ideals. Advances in Appl. Math., 23, 211233.10.1006/aama.1999.0652CrossRefGoogle Scholar
[175] Xu, Y. (2001). Orthogonal polynomials and cubature formulae on the balls, simplices, and spheres. J. Comp. Appl. Math. 127, 349368.10.1016/S0377-0427(00)00504-5CrossRefGoogle Scholar
[176] Xu, Y. (2003). Lower bound for the number of nodes of cubature formulae on the unit ball. J. Complexity, 19, 392-402.10.1016/S0885-064X(03)00007-4CrossRefGoogle Scholar
[177] Xu, Y. (2011). On Gauss-Lobatto integration on the triangle. SIAM J. Numer. Anal. 49, 541548.10.1137/100792263CrossRefGoogle Scholar
[178] Xu, Y. (2012a). Orthogonal polynomials and expansions for a family of weight functions in two variables. Constr. Approx. 36, 161190.10.1007/s00365-011-9149-4CrossRefGoogle Scholar
[179] Xu, Y. (2012b). Minimal Cubature rules and polynomial interpolation in two variables. J. Approx. Theory 164, 630.10.1016/j.jat.2011.09.003CrossRefGoogle Scholar
[180] Xu, Y. (2015). Generalized characteristic polynomials and Gaussian cubature rules. SIAM. J. Matrix Anal. 36, 11291142.10.1137/140972810CrossRefGoogle Scholar
[181] Xu, Y. (2017)., Minimal Cubature rules and polynomial interpolation in two variables, II. J. Approx. Theory 214, 4968.10.1016/j.jat.2016.11.002CrossRefGoogle Scholar
[182] Xu, Y. (2021). Approximation and localized polynomial frame on conic domains. J. Functional Anal. 281, no. 12, Paper no. 109257, 94 pp.10.1016/j.jfa.2021.109257CrossRefGoogle Scholar
[183] Yudin, V. A. (1997). Lower bounds for spherical designs. (Russian. Russian summary) Izv. Ross. Akad. Nauk Ser. Mat. 61, no. 3, 213223. Translation in Izv. Math. 61 (1997), no. 3, 673683.Google Scholar
[184] Zhang, L., Cui, T. and Liu, H. (2009). A set of symmetric quadrature rules on triangles and tetrahedra. J. Comp. Math. 27, 8996.Google Scholar

Accessibility standard: WCAG 2.2 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Yuan Xu, University of Oregon
  • Book: Minimal Cubature Rules
  • Online publication: 10 October 2025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Yuan Xu, University of Oregon
  • Book: Minimal Cubature Rules
  • Online publication: 10 October 2025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Yuan Xu, University of Oregon
  • Book: Minimal Cubature Rules
  • Online publication: 10 October 2025
Available formats
×