Skip to main content Accessibility help
×
Hostname: page-component-7f64f4797f-kg7gq Total loading time: 0.001 Render date: 2025-11-04T09:44:04.037Z Has data issue: false hasContentIssue false

2 - Three Lectures on Quadratic Enumerative Geometry

Published online by Cambridge University Press:  31 October 2025

Pedro L. del Ángel R.
Affiliation:
Centro de Investigación en Matemáticas
Frank Neumann
Affiliation:
Università di Pavia
Alexander H. W. Schmitt
Affiliation:
Freie Universität Berlin
Get access

Summary

We give an overview of the goals and recent progress in the development of an enumerative geometry valued in quadratic forms.

Information

Type
Chapter
Information
Moduli, Motives and Bundles
New Trends in Algebraic Geometry
, pp. 33 - 105
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Ananyevskiy, A., SL-oriented cohomology theories. Contemp. Math., 745 American Mathematical Society, Providence, RI, 2020, 119.Google Scholar
Aranha, D., Khan, A. A., Latyntsev, A., Park, H., Ravi, C., Virtual localization revisited. Adv. Math. 479 (2025), Paper No. 110434.Google Scholar
Arcila-Maya, N., Bethea, C., Opie, M., Wickelgren, K., Zakharevich, I., Compactly supported 𝔸1-Euler characteristic and the Hochschild complex. Topology Appl.316 (2022), Paper No. 108108, 24 pp.Google Scholar
Ayoub, J., Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Astérisque (2007), no. 314, x+466 pp.Google Scholar
Bachmann, T., Calmès, B., Déglise, F., Fasel, J., Østvær, P.A., Milnor–Witt Motives. Preprint 2022. arXiv:2004.06634.Google Scholar
Bachmann, T., Wickelgren, K., Euler classes: six-functors formalism, dualities, integrality and linear subspaces of complete intersections. J. Inst. Math. Jussieu 22 (2023), no. 2, 681746.Google Scholar
Barge, J., Morel, F., Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 4, 287290.Google Scholar
Bloch, S., K2 and algebraic cycles. Ann. of Math. (2)99 (1974), 349379.10.2307/1970902CrossRefGoogle Scholar
Calmès, B., Hornbostel, J., Pushforwards for Witt groups of schemes. Comment. Math. Helv. 86 (2011), no. 2, 437468.Google Scholar
Carlson, J. A., Griffiths, P. A., Infinitesimal variations of Hodge structure and the global Torelli problem. Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 5176, Sijthoff & Noordhoff, Alphen aan den Rijn–Germantown, Md., 1980.Google Scholar
Chevalley, C., Les classes d’équivalence rationnelle, II. Séminaire Claude Chevalley, tome 3 (1958), exp. no 3, p. 118.Google Scholar
Cisinski, D.-C., Déglise, F., Triangulated categories of mixed motives. Springer Monogr. Math. Springer, Cham, 2019.Google Scholar
Déglise, F., Jin, F., Khan, A. A., Fundamental classes in motivic homotopy theory. J. Eur. Math. Soc. (JEMS) 23 (2021), no. 12, 39353993.10.4171/jems/1094CrossRefGoogle Scholar
Dolgachev, I., Weighted projective varieties. Group actions and vector fields (Vancouver, B.C., 1981), 3471, Lecture Notes in Math., 956, Springer, Berlin, 1982.10.1007/BFb0101508CrossRefGoogle Scholar
Edidin, D., Graham, W., Equivariant intersection theory. Invent. Math. 131 (1998a), no. 3, 595634.Google Scholar
Edidin, D., Graham, W., Localization in equivariant intersection theory and the Bott residue formula. Amer. J. Math. 120 (1998), no. 3, 619636.Google Scholar
Elbaz-Vincent, P., Müller-Stach, S., Milnor K-theory of rings, higher Chow groups and applications. Invent. Math.148 (2002), no.1, 177206.Google Scholar
Ellingsrud, G., Strømme, S., Bott’s formula and enumerative geometry. J. Amer. Math. Soc.9 (1996), no.1, 175193.Google Scholar
Feld, N.. Morel homotopy modules and Milnor–Witt cycle modules. Doc. Math. 26 (2021), 617659.10.4171/dm/824CrossRefGoogle Scholar
Feld, N.. Milnor–Witt cycle modules. J. Pure Appl. Algebra 224 (2020), no. 7, 106298, 44 pp.Google Scholar
Fulton, W., Theory, Intersection. Ergeb. Math. Grenzgeb. (3), 2. Springer-Verlag, Berlin, 1998.Google Scholar
Fulton, W., Harris, J., Theory, Representation. A first course. Grad. Texts in Math., 129. Springer-Verlag, New York, 1991.Google Scholar
Grothendieck, A., La théorie des classes de Chern. Bull. Soc. Math. France 86 (1958), 137154.Google Scholar
Grünberg, D. B., Moree, P., Sequences of enumerative geometry: congruences and asymptotics. With an appendix by Don Zagier Experiment. Math.17 (2008), no.4, 409426.Google Scholar
Hoyois, M., The six operations in equivariant motivic homotopy theory. Adv. Math. 305 (2017), 197279.Google Scholar
Kass, J., Wickelgren, K., An arithmetic count of the lines on a smooth cubic surface. Compos. Math. 157 (2021), no. 4, 677709.CrossRefGoogle Scholar
Kato, K., Milnor K-theory and the Chow group of zero cycles. Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, CO, 1983), 241253. Contemp. Math., 55 American Mathematical Society, Providence, RI, 1986.Google Scholar
Kerz, M., The Gersten conjecture for Milnor K-theory. Invent. Math.175 (2009), no.1, 133.Google Scholar
Levine, M., Motivic Euler characteristics and Witt-valued characteristic classes. Nagoya Math. J. 236 (2019), 251310.10.1017/nmj.2019.6CrossRefGoogle Scholar
Levine, M., Aspects of enumerative geometry with quadratic forms. Doc. Math. 25 (2020), 21792239.Google Scholar
Levine, M., Atiyah–Bott localization in equivariant Witt cohomology. Chapter 9, this volume.Google Scholar
Levine, M., Pauli, S., Quadratic Counts of Twisted Cubics. Perspectives on four decades of algebraic geometry. Vol. 1. In memory of Alberto Collino, 455–544. Progr. Math., 351 Birkhäuser/Springer, Cham, 2025.Google Scholar
Levine, M., Pepin Lehalleur, S., Srinivas, V., Euler characteristics of homogeneous and weighted-homogeneous hypersurfaces. Adv. Math.441 (2024), Paper No. 109556, 86 pp.10.1016/j.aim.2024.109556CrossRefGoogle Scholar
Levine, M., Raksit, A., Motivic Gauss–Bonnet formulas. Algebra & Number Theory14 (2020), no.7, 18011851.10.2140/ant.2020.14.1801CrossRefGoogle Scholar
Matsumura, H., Commutative algebra. Math. Lecture Note Ser., 56 Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1980.Google Scholar
McKean, S., An arithmetic enrichment of Bézout’s Theorem. Math. Ann. 379 (2021), no. 1-2, 633660.Google Scholar
Morel, F., An introduction to 𝔸1-homotopy theory. ICTP Lect. Notes, XV Abdus Salam International Centre for Theoretical Physics, Trieste, 2004, 357441.Google Scholar
Morel, F., 𝔸1-algebraic topology over a field. Lecture Notes in Math., 2052 Springer, Heidelberg, 2012.Google Scholar
Morel, F., Voevodsky, V., 𝔸1-homotopy theory of schemes. Publ. Math. IHES 90 (1999), 45143.CrossRefGoogle Scholar
Panin, I., Oriented cohomology theories of algebraic varieties. K-Theory 30 (2003), no. 3, 265314.Google Scholar
Panin, I., Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov). Homology Homotopy Appl. 11 (2009), no. 1, 349405.CrossRefGoogle Scholar
Panin, I., Walter, C., On the motivic commutative ring spectrum BO. Algebra i Analiz 30 (2018), no. 6, 43–96. St. Petersburg Math. J. 30 (2019), no. 6, 933972.Google Scholar
Quillen, D., Higher algebraic K-theory. I. Lecture Notes in Math., Vol. 341 Springer-Verlag, Berlin-New York, 1973, pp. 85147.Google Scholar
Piene, R., Schlessinger, M., On the Hilbert scheme compactification of the space of twisted cubics. Amer. J. Math.107 (1985), no.4, 761774.Google Scholar
Riou, J., Dualité de Spanier–Whitehead en géométrie algébrique. C. R. Math. Acad. Sci. Paris 340 (2005), no. 6, 431436.Google Scholar
Roberts, J., Chow’s moving lemma. Appendix 2 to: “Motives” by Kleiman, Steven L.. Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.). Groningen, Wolters-Noordhoff. pp. 8996.Google Scholar
Rost, M., Chow Groups with Coefficients, Doc. Math. 1 (1996), No. 16, 319393.10.4171/dm/16CrossRefGoogle Scholar
Scharlau, W., Quadratic and Hermitian forms. Grundlehren Math. Wiss., 270 Springer-Verlag, Berlin, 1985.Google Scholar
Scheja, G., Storch, U., Über Spurfunktionen bei vollständigen Durchschnitten. J. Reine Angew. Math. 278 (279) (1975), 174190.Google Scholar
Schlichting, M., Hermitian K -theory of exact categories. J. K-Theory 5 (2010), no. 1, 105165.CrossRefGoogle Scholar
Serre, J. P., Algèbre locale. Multiplicités. Lecture Notes in Math., 11 Springer-Verlag, Berlin-New York, 1965.Google Scholar
Srinivas, V., Gysin maps and cycle classes for Hodge cohomology. Proc. Indian Acad. Sci. Math. Sci. 103 (1993), no. 3, 209247.10.1007/BF02866988CrossRefGoogle Scholar
Totaro, B., The Chow ring of a classifying space. Algebraic K-theory (Seattle, WA, 1997), 249281, Proc. Sympos. Pure Math., 67, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
Viergever, A. M., The quadratic Euler characteristic of a smooth projective same-degree complete intersection. Preprint 2023. arXiv:2306.16155.Google Scholar
Voevodsky, V., 𝔸1-homotopy theory. Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998) Doc. Math., Extra Vol. I (1998), 579604.Google Scholar
Wendt, M., Oriented Schubert calculus in Chow–Witt rings of Grassmannians. Contemp. Math., 745 American Mathematical Society, Providence, RI, 2020, 217267.Google Scholar
Pauli, S., Quadratic types and the dynamic Euler number of lines on a quintic threefold. Adv. Math. 405 (2022), Paper No. 108508.CrossRefGoogle Scholar

Accessibility standard: Inaccessible, or known limited accessibility

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book is known to have missing or limited accessibility features. We may be reviewing its accessibility for future improvement, but final compliance is not yet assured and may be subject to legal exceptions. If you have any questions, please contact accessibility@cambridge.org.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×