Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-j65dx Total loading time: 0 Render date: 2025-06-19T05:18:24.599Z Has data issue: false hasContentIssue false

Global Threats in Combinatorial Games: A Computation Model with Applications to Chess Endgames

Published online by Cambridge University Press:  29 May 2025

Richard Nowakowski
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

ABSTRACT. The end of play in combinatorial games is determined by the normal termination rule: A player unable to move loses. We examine combinatorial games that contain global threats. In sums of such games, a move in a component game can lead to an immediate overall win in the sum of all component games. We show how to model global threats in Combinatorial Game Theory with the help of infinite loopy games. Further, we present an algorithm that avoids computing with infinite game values by cutting off branches of the game tree that lead to global wins. We apply this algorithm to combinatorial chess endgames as introduced by Elkies [4] where this approach allows to deal with positions that contain entailing moves such as captures and threats to capture. As a result, we present a calculator that computes combinatorial values of certain pawn positions which allow the application of Combinatorial Game Theory.

1. Global Wins and Global Threats

Combinatorial game theory (CGT) applies the divide and conquer paradigm to game analysis and game tree search. We decompose a game into independent components (local games) and compute its value as the sum of all local games. The end of play in a sum of combinatorial games is determined by the normal termination rule: A player unable to move loses. Thus, in a sum of games, no single move or game can be decisive by itself. We investigate a class of games where a move in a local game may lead to an overall win in the sum of all local games. We call such a move globally winning.

Examples of globally winning moves are moves that capture a vital opponent piece such as checkmate, moves that promote a piece to a much more powerful one like promoting a king in checkers, or moves that “escape” in games where one side has to try to catch the other side's pieces like in the game Fox and Geese (Winning Ways [2], chapter 20). Figure 1 shows a Fox and Geese position where the fox escapes with his last move from e5 to d4 and obtains “an infinite number of free moves”. If this game were a component of a sum game S, the fox side would never lose in S.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×