Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-21T21:57:15.395Z Has data issue: false hasContentIssue false

A Symmetric Strategy in Graph Avoidance Games

Published online by Cambridge University Press:  29 May 2025

Richard Nowakowski
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

ABSTRACT. In the graph avoidance game two players alternately color the edges of a graph G in red and in blue respectively. The player who first creates a monochromatic subgraph isomorphic to a forbidden graph F loses. A symmetric strategy of the second player ensures that, independently of the first player's strategy, the blue and the red subgraph are isomorphic after every round of the game. We address the class of those graphs G that admit a symmetric strategy for all F and discuss relevant graph-theoretic and complexity issues. We also show examples when, though a symmetric strategy on G generally does not exist, it is still available for a particular F.

1. Introduction

In a broad class of games that have been studied in the literature, two players, A and *B, alternately color the edges of a graph G in red and in blue respectively. In the achievement game the objective is to create a monochromatic subgraph isomorphic to a given graph F. In the avoidance game the objective is, on the contrary, to avoid creating such a subgraph. Both the achievement and the avoidance games have strong and weak versions. In the strong version A and 23 both have the same objective. In the weak version B just plays against A, that is, tries either to prevent A from creating a copy of F in the achievement game or to force such creation in the avoidance game. The weak achievement game, known also as the Maker-Breaker game, is most studied [4; 1; 13]. Our paper is motivated by the strong avoidance game [7; 5] where monochromatic F-subgraphs of G are forbidden, and the player who first creates such a subgraph loses.

The instance of a strong avoidance game with complete graphs G = K6 and F = K3 is well known under the name SIM [15]. Since for any edge bicoloring of K6 there is a monochromatic K3 , a draw in this case is impossible. It is proven in [12] that a winning strategy in SIM is available for B. A few other results for small graphs are known [7].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×