Published online by Cambridge University Press: 19 June 2025
Absorbing phase transitions are an important class of nonequilibrium phase transitions. They are characterized by one or more absorbing states, defined as microscopic states from which the system cannot escape. The most famous case with one absorbing state is called directed percolation (a sort of driven version of the usual, isotropic percolation) and it represents, for example, the spreading of a disease through a contact process: If the infection rate is large enough with respect to the recovery rate, the asymptotic state shows a finite fraction of infected individuals. Models with one absorbing state, local dynamics, and no additional symmetries typically fall within the directed percolation universality class. We also provide a short introduction to self-organized criticality, devoting a section to the Bak–Tang–Wiesenfeld model.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.