Published online by Cambridge University Press: 05 June 2012
Introduction
Many polymeric liquids have a microstructure even at rest. This might be a consequence of the presence of dispersed particulates or, in the case of liquid crystalline polymers, because of the rigidity of the polymer molecules. Continuum equations describing the stress and microstructure evolution are available for some limiting cases, permitting calculations of flow in complex geometries. The levels of description of the stress states are not comparable to that for entangled flexible polymer melts, so the resulting calculations are less likely to be in quantitative agreement, but they are still very useful for gaining insight into the development of morphology. We address three cases of structured fluids in this chapter: fiber suspensions, such as those that might be used for thermoplastic composites; liquid crystalline polymers; and fluids that exhibit a yield stress, which might include nanoparticle-filled melts.
Fiber Suspensions
The continuum approach to the rheology of fiber suspensions is based on a 1922 solution by Jeffery for the creeping-flow mechanics of a single ellipsoid in a shear flow. The ellipsoid rotates in a nonsinusoidal fashion, spending most of the period near a fixed angle to the flow direction. The ellipsoid aligns with the flow direction at all times in the limit of an infinite aspect ratio. The key assumptions in deriving a constitutive equation for a fiber suspension from Jeffery's result for the ellipsoid are that the suspending fluid is Newtonian and the suspension is dilute.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.