Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-w9n4q Total loading time: 0 Render date: 2025-06-19T02:05:55.156Z Has data issue: false hasContentIssue false

Section 8 - Helminth Infections

Published online by Cambridge University Press:  18 June 2025

David Mabey
Affiliation:
London School of Hygiene and Tropical Medicine
Martin W. Weber
Affiliation:
World Health Organization
Moffat Nyirenda
Affiliation:
London School of Hygiene and Tropical Medicine
Dorothy Yeboah-Manu
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana
Jackson Orem
Affiliation:
Uganda Cancer Institute, Kampala
Laura Benjamin
Affiliation:
University College London
Michael Marks
Affiliation:
London School of Hygiene and Tropical Medicine
Nicholas A. Feasey
Affiliation:
Liverpool School of Tropical Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Bibliography

Amoah, ID, Singh, G, Stenström, TA, Reddy, P. Detection and quantification of soil-transmitted helminths in environmental samples: a review of current state-of-the-art and future perspectives. Acta Trop 2017;169:187201. doi: 10.1016/j.actatropica.2017.02.014.CrossRefGoogle ScholarPubMed
Anderson, RM, Turner, HC, Truscott, JE, Hollingsworth, TD, Brooker, SJ. Should the goal for the treatment of soil transmitted helminth (STH) infections be changed from morbidity control in children to community-wide transmission elimination? PLoS Negl Trop Dis 2015;9(8):e0003897.10.1371/journal.pntd.0003897CrossRefGoogle ScholarPubMed
Brooker, S, Kabatereine, NB, Smith, JL et al. An updated atlas of human helminth infections: the example of East Africa. Int J Hlth Geog 2009;8:42.CrossRefGoogle ScholarPubMed
Bundy, DAP, Shaeffer, S, Jukes, M et al. School based health and nutrition programs. In Breman, JG, Measham, AR, Alleyne, G et al. (eds) Disease Control Priorities for Developing Countries, 1091–108. 2006. Oxford: Oxford University Press.Google Scholar
Bundy, DAP, Silva, ND, Horton, S, Jamison, DT, Patton, GC, eds. Child and Adolescent Health and Development. 3rd ed. 2017. Washington (DC): The International Bank for Reconstruction and Development/The World Bank.Google ScholarPubMed
Buonfrate, D, Bisanzio, D, Giorli, G et al. The global prevalence of Strongyloides stercoralis infection. Pathogens 2020;9(6):468.10.3390/pathogens9060468CrossRefGoogle ScholarPubMed
Buonfrate, D, Salas-Coronas, J, Muñoz M. Multiple-dose versus single-dose ivermectin for Strongyloides stercoralis infection (Strong Treat 1 to 4): a multicentre, open-label, phase 3, randomised controlled superiority trial. Lancet Infect Dis 2019;19(11):11811190. doi: 10.1016/S1473-3099(19)30289-0.Google Scholar
Chen, Y-D, Qian, M-B, Zhu, H-H, et al. Soil-transmitted helminthiasis in China: a national survey in 2014–2015. PLoS Negl Trop Dis 2021; 15(10):e0009710.10.1371/journal.pntd.0009710CrossRefGoogle Scholar
Conterno, LO, Turchi, MD, Corrêa, I, Monteiro de Barros Almeida RA. Anthelmintic drugs for treating ascariasis. Cochrane Database Syst Rev 2020;4(4):CD010599. doi: 10.1002/14651858.CD010599.pub2.Google ScholarPubMed
Croke, K, Atun, R. The long run impact of early childhood deworming on numeracy and literacy: evidence from Uganda. PLoS Negl Trop Dis 2019;13(1):e0007085.10.1371/journal.pntd.0007085CrossRefGoogle Scholar
GBD Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2019; 396(10262):1562.Google Scholar
Hailu, T, Nibret, E, Amor, A, Munshea, A. Strongyloidiasis in Africa: systematic review and meta-analysis on prevalence, diagnostic methods, and study settings. Biomed Res Int 2020;2020:2868564. doi: 10.1155/2020/2868564.CrossRefGoogle ScholarPubMed
Halliday, KE, Oswald, WE, Mcharo, C et al. Community-level epidemiology of soil-transmitted helminths in the context of school-based deworming: baseline results of a cluster randomised trial on the coast of Kenya. PLoS Negl Trop Dis 2019;13(8):e0007427.10.1371/journal.pntd.0007427CrossRefGoogle ScholarPubMed
Mahmud, MA, Spigt, M, Bezabih, AM, Pavon, IL, Dinant, GJ, Velasco, RB. Efficacy of handwashing with soap and nail clipping on intestinal parasitic infections in school-aged children: a factorial cluster randomized controlled trial. PLoS Med 2015;12(6):e1001837. doi:10.1371/journal.pmed.1001837.CrossRefGoogle ScholarPubMed
Matamoros, G, Sánchez, A, Gabrie, JA et al. Efficacy and safety of albendazole and high-dose ivermectin coadministration in school-aged children infected with Trichuris trichiura in Honduras: a randomized controlled trial. Clin Infect Dis 2021;73(7):12031210. doi: 10.1093/cid/ciab365.CrossRefGoogle ScholarPubMed
Moser, W, Schindler, C, Keiser, J. Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis. BMJ 2017;358:j4307.10.1136/bmj.j4307CrossRefGoogle ScholarPubMed
Nery, SV, Pickering, AJ, Abate, E et al. The role of water, sanitation and hygiene interventions in reducing soil-transmitted helminths: interpreting the evidence and identifying next steps. Parasit Vectors 2019;12(1):273. doi: 10.1186/s13071-019-3532-6.CrossRefGoogle Scholar
Ooko, PB, Wambua, P, Oloo, M et al. The spectrum of paediatric intestinal obstruction in Kenya. Pan Afr Med J 2016;24:43. doi: 10.11604/pamj.2016.24.43.6256.Google ScholarPubMed
Palmeirim, MS, Hürlimann, E, Knopp, S et al. Efficacy and safety of co-administered ivermectin plus albendazole for treating soil-transmitted helminths: a systematic review, meta-analysis and individual patient data analysis. PLoS Negl Trop Dis 2018;12(4):e0006458. doi: 10.1371/journal.pntd.0006458.CrossRefGoogle ScholarPubMed
Palmeirim, MS, Specht, S, Scandale, I, Gander-Meisterernst, I. Preclinical and clinical characteristics of the trichuricidal drug oxantel pamoate and clinical development plans: a review. Drugs 2021;81(8):907921. doi: 10.1007/s40265-021-01505-1.CrossRefGoogle ScholarPubMed
Pullan, R, Brooker, S. The health impact of polyparasitism in humans: are we under estimating the burden of parasitic diseases? Parasitol 2008;135:783–94.10.1017/S0031182008000346CrossRefGoogle ScholarPubMed
Pullan, RL, Halliday, KE, Oswald, WE et al. Effects, equity, and cost of school-based and community-wide treatment strategies for soil-transmitted helminths in Kenya: a cluster-randomised controlled trial. Lancet 2019;393(10185):20392050. doi: 10.1016/S0140-6736(18)32591.CrossRefGoogle Scholar
Requena-Méndez, A, Chiodini, PL, Bisoffi, Z, Buonfrate, D, Gotuzzo, E, Muñoz, J. The laboratory diagnosis and follow up of strongyloidiasis: a systematic review. PLoS Negl Trop Dis 2013;7(1):e2002. doi: 10.1371/journal.pntd.0002002.CrossRefGoogle ScholarPubMed
Sartorius, B, Cano, J, Simpson, H et al. Prevalence and intensity of soil-transmitted helminth infections of children in sub-Saharan Africa, 2000–18: a geospatial analysis. Lancet Glob Health 2021; 9(1):e52e60.CrossRefGoogle Scholar
Smith, JL, Brooker, S. The impact of hookworm infection and deworming on anaemia in non-pregnant populations: a systematic review. Trop Med Int Health 2010;15:776795.10.1111/j.1365-3156.2010.02542.xCrossRefGoogle ScholarPubMed
Speich, B, Ame, SM, Ali, SM et al. Oxantel pamoate-albendazole for Trichuris trichiura infection. N Engl J Med 2014;370(7):610620. doi: 10.1056/NEJMoa1301956.CrossRefGoogle ScholarPubMed
Stephenson, LS Impact of Helminth Infections on Human Nutrition: Schistosomes and Soil Transmitted Helminths. 1987. London: Taylor & Francis.Google Scholar
Taylor-Robinson, DC, Maayan, N, Donegan, S, Chaplin, M, Garner, P. Public health deworming programmes for soil-transmitted helminths in children living in endemic areas. Cochrane Database Syst Rev 2019;9(9):CD000371.Google ScholarPubMed
Truscott, JE, Hollingsworth, TD, Brooker, SJ, Anderson, RM. Can chemotherapy alone eliminate the transmission of soil transmitted helminths? Parasit Vectors 2014;7:266. doi:10.1186/1756-3305-7-266.CrossRefGoogle ScholarPubMed
Zendejas-Heredia, PA, Colella, V, Hii, SF, Traub, RJ. Comparison of the egg recovery rates and limit of detection for soil-transmitted helminths using the Kato-Katz thick smear, faecal flotation and quantitative real-time PCR in human stool. PLoS Negl Trop Dis 2021;15(5):e0009395. doi: 10.1371/journal.pntd.0009395.CrossRefGoogle ScholarPubMed
African Research Network for Neglected Tropical Diseases: https://arntd.org/.Google Scholar
Global Burden of Disease Study: www.globalburden.org.Google Scholar
PLoS. Neglected Tropical Diseases: www.plosntd.org.Google Scholar
World Health Organization – ESPEN: https://espen.afro.who.int/.Google Scholar
World Health Organization – Neglected Tropical Diseases: www.who.int/teams/control-of-neglected-tropical-diseases/.Google Scholar
African Research Network for Neglected Tropical Diseases: https://arntd.org/.Google Scholar
Global Burden of Disease Study: www.globalburden.org.Google Scholar
PLoS. Neglected Tropical Diseases: www.plosntd.org.Google Scholar
World Health Organization – ESPEN: https://espen.afro.who.int/.Google Scholar
World Health Organization – Neglected Tropical Diseases: www.who.int/teams/control-of-neglected-tropical-diseases/.Google Scholar

Useful websites

African Research Network for Neglected Tropical Diseases: https://arntd.org/.Google Scholar
Global Burden of Disease Study: www.globalburden.org.Google Scholar
PLoS. Neglected Tropical Diseases: www.plosntd.org.Google Scholar
World Health Organization – ESPEN: https://espen.afro.who.int/.Google Scholar
World Health Organization – Neglected Tropical Diseases: www.who.int/teams/control-of-neglected-tropical-diseases/.Google Scholar

Bibliography

Archer, J., Barksby, R., Pennance, T. et al. 2020. Analytical and clinical assessment of a portable, isothermal recombinase polymerase amplification (RPA) assay for the molecular diagnosis of urogenital schistosomiasis. Molecules. doi: 10.3390/molecules25184175.CrossRefGoogle Scholar
Bergquist, R. & Elmorshedy, H. 2018. Artemether and praziquantel: origin, mode of action, impact, and suggested application for effective control of human schistosomiasis. Trop Med Infect Dis. doi: 10.3390/tropicalmed3040125.CrossRefGoogle Scholar
Brooker, S., Kabatereine, N. B., Gyapong, J. O., Stothard, J. R. & Utzinger, J. 2009. Rapid mapping of schistosomiasis and other neglected tropical diseases in the context of integrated control programmes in Africa. Parasitology, 136, 1707–18.CrossRefGoogle ScholarPubMed
Bustinduy, A. L., Sousa-Figueiredo, J. C., Adriko, M. et al. 2013. Fecal occult blood and fecal calprotectin as point-of-care markers of intestinal morbidity in Ugandan children with Schistosoma mansoni infection. PLoS Negl Trop Dis, 7, e2542.10.1371/journal.pntd.0002542CrossRefGoogle ScholarPubMed
Bustinduy, A. L., Friedman, J. F., Kjetland, E. F. et al. 2016a. Expanding praziquantel (PZQ) access beyond mass drug administration programs: paving a way forward for a pediatric PZQ formulation for schistosomiasis. PLoS Negl Trop Dis, 10, e0004946.10.1371/journal.pntd.0004946CrossRefGoogle ScholarPubMed
Bustinduy, A. L., Waterhouse, D., De Sousa-Figueiredo, J. C. et al. 2016b. Population pharmacokinetics and pharmacodynamics of praziquantel in Ugandan children with intestinal schistosomiasis: higher dosages are required for maximal efficacy. mBio, 7. doi: 10.1128/mBio.00227-16.CrossRefGoogle ScholarPubMed
Bustinduy, A. L., Edielu, A. & Sturt, A. S. 2020a. Could this child have schistosomiasis? When to suspect it and what to do about it. Pediatr Infect Dis J, 39, e125–9.10.1097/INF.0000000000002706CrossRefGoogle Scholar
Bustinduy, A. L., Kolamunnage-Dona, R., Mirochnick, M. H. et al. 2020b. Population pharmacokinetics of praziquantel in pregnant and lactating Filipino women infected with Schistosoma japonicum. Antimicrob Agents Chemother, 64. Doi: 10.1128/Aac.00566-20.CrossRefGoogle ScholarPubMed
Bustinduy, A. L., Richter, J. & King, C. H. 2021. Schistosomiasis. In Manson’s Tropical Medicine. London: Elsevier.Google Scholar
Bustinduy, A. L., Randriansolo, B., Sturt, A. et al. 2022. An update on female and male genital schistosomiasis and a call to integrate efforts to escalate diagnosis, treatment and awareness in endemic and non-endemic settings: the time is now. Advances in Parasitology. doi: 10.1016/bs.apar.2021.12.003.CrossRefGoogle Scholar
Colley, D. G., Bustinduy, A. L., Secor, W. E. & King, C. H. 2014. Human schistosomiasis. Lancet, 383, 2253–64.10.1016/S0140-6736(13)61949-2CrossRefGoogle ScholarPubMed
Colley, D. G., King, C. H., Kittur, N. et al. 2020. Evaluation, validation, and recognition of the point-of-care circulating cathodic antigen, urine-based assay for mapping Schistosoma mansoni infections. Am J Trop Med Hyg, 103, 4249.10.4269/ajtmh.19-0788CrossRefGoogle ScholarPubMed
Corstjens, P. L., De Dood, C. J., Kornelis, D. et al. 2014. Tools for diagnosis, monitoring and screening of Schistosoma infections utilizing lateral-flow based assays and upconverting phosphor labels. Parasitology, 141, 1841–55.10.1017/S0031182014000626CrossRefGoogle ScholarPubMed
Engels, D., Hotez, P. J., Ducker, C. et al. 2020. Integration of prevention and control measures for female genital schistosomiasis, HIV and cervical cancer. Bull World Health Organ, 98, 61524.10.2471/BLT.20.252270CrossRefGoogle ScholarPubMed
Ezeamama, A. E., Bustinduy, A. L., Nkwata, A. K. et al. 2018. Cognitive deficits and educational loss in children with schistosome infection: a systematic review and meta-analysis. PLoS Negl Trop Dis, 12, e0005524.10.1371/journal.pntd.0005524CrossRefGoogle ScholarPubMed
Fenwick, A., Webster, J. P., Bosque-Oliva, E. et al. 2009. The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology, 136, 1719–30.10.1017/S0031182009990400CrossRefGoogle ScholarPubMed
French, M. D., Evans, D., Fleming, F. M. et al. 2018. Schistosomiasis in Africa: improving strategies for long-term and sustainable morbidity control. PLoS Negl Trop Dis, 12, e0006484.10.1371/journal.pntd.0006484CrossRefGoogle ScholarPubMed
Friedman, J. F., Olveda, R. M., Mirochnick, M. H., Bustinduy, A. L. & Elliott, A. M. 2018. Praziquantel for the treatment of schistosomiasis during human pregnancy. Bull World Health Organ, 96, 5965.10.2471/BLT.17.198879CrossRefGoogle ScholarPubMed
Gandasegui, J., Fernandez-Soto, P., Dacal, E. et al. 2018. Field and laboratory comparative evaluation of a LAMP assay for the diagnosis of urogenital schistosomiasis in Cubal, Central Angola. Trop Med Int Health, 23, 9921001.10.1111/tmi.13117CrossRefGoogle ScholarPubMed
GBD 2017 DALYs and HALE Collaborators 2018. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392, 18591922.10.1016/S0140-6736(18)32335-3CrossRefGoogle Scholar
Kayuni, S., Lampiao, F., Makaula, P. et al. 2019. A systematic review with epidemiological update of male genital schistosomiasis (MGS): a call for integrated case management across the health system in sub-Saharan Africa. Parasite Epidemiol Control, 4, e00077.10.1016/j.parepi.2018.e00077CrossRefGoogle Scholar
King, C. H. & Dangerfield-Cha, M. 2008. The unacknowledged impact of chronic schistosomiasis. Chronic Illn, 4, 6579.10.1177/1742395307084407CrossRefGoogle ScholarPubMed
King, C. H., Dickman, K. & Tisch, D. J. 2005. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet, 365, 1561–9.10.1016/S0140-6736(05)66457-4CrossRefGoogle ScholarPubMed
Knopp, S., Person, B., Ame, S. M. et al. 2019. Evaluation of integrated interventions layered on mass drug administration for urogenital schistosomiasis elimination: a cluster-randomised trial. Lancet Glob Health, 7, e1118–29.10.1016/S2214-109X(19)30189-5CrossRefGoogle ScholarPubMed
Kokaliaris, C., Garba, A., Matuska, M. et al. 2022. Effect of preventive chemotherapy with praziquantel on schistosomiasis among school-aged children in sub-Saharan Africa: a spatiotemporal modelling study. Lancet Infect Dis, 22, 136–49.10.1016/S1473-3099(21)00090-6CrossRefGoogle ScholarPubMed
Koukounari, A., Gabrielli, A. F., Toure, S. et al. 2007. Schistosoma haematobium infection and morbidity before and after large-scale administration of praziquantel in Burkina Faso. J Infect Dis, 196, 659–69.10.1086/520515CrossRefGoogle ScholarPubMed
Lai, Y. S., Biedermann, P., Ekpo, U. F. et al. 2015. Spatial distribution of schistosomiasis and treatment needs in sub-Saharan Africa: a systematic review and geostatistical analysis. Lancet Infect Dis, 15, 927–40.10.1016/S1473-3099(15)00066-3CrossRefGoogle ScholarPubMed
Leutscher, P., Ramarokoto, C. E., Reimert, C. et al. 2000. Community-based study of genital schistosomiasis in men from Madagascar. Lancet, 355, 117–18.10.1016/S0140-6736(99)04856-4CrossRefGoogle ScholarPubMed
Mocumbi, A. O., Stothard, J. R., Correia-De-Sa, P. & Yacoub, M. 2019. Endomyocardial fibrosis: an update after 70 Years. Curr Cardiol Rep, 21, 148.10.1007/s11886-019-1244-3CrossRefGoogle ScholarPubMed
Norseth, H. M., Ndhlovu, P. D., Kleppa, E. et al. 2014. The colposcopic atlas of schistosomiasis in the lower female genital tract based on studies in Malawi, Zimbabwe, Madagascar and South Africa. PLoS Negl Trop Dis, 8, e3229.CrossRefGoogle ScholarPubMed
Olliaro, P., Delgado-Romero, P. & Keiser, J. 2014. The little we know about the pharmacokinetics and pharmacodynamics of praziquantel (racemate and R-enantiomer). J Antimicrob Chemother, 69, 863–70.10.1093/jac/dkt491CrossRefGoogle Scholar
Poggensee, G., Kiwelu, I., Weger, V. et al. 2000. Female genital schistosomiasis of the lower genital tract: prevalence and disease-associated morbidity in northern Tanzania. J Infect Dis, 181, 1210–13.10.1086/315345CrossRefGoogle ScholarPubMed
Remppis, J., Verheyden, A., Bustinduy, A. L. et al. 2020. Focused Assessment with Sonography for Urinary Schistosomiasis (FASUS) – pilot evaluation of a simple point-of-care ultrasound protocol and short training program for detecting urinary tract morbidity in highly endemic settings. Trans R Soc Trop Med Hyg, 114, 3848.Google ScholarPubMed
Richter, J., Hatz, C., Campagne, G., Bergquist, N. R. & Jenkins, J. M. 2000. Ultrasound in schistosomiasis: A practical guide to the standardized use of ultrasonography for the assessment of schistosomiasis-related morbidity. Geneva: WHO.Google Scholar
Ross, A. G., Vickers, D., Olds, G. R., Shah, S. M. & McManus, D. P. 2007. Katayama syndrome. Lancet Infect Dis, 7, 218–24.10.1016/S1473-3099(07)70053-1CrossRefGoogle ScholarPubMed
Sokolow, S. H., Wood, C. L., Jones, I. J. et al. 2016. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. PLoS Negl Trop Dis, 10, e0004794.10.1371/journal.pntd.0004794CrossRefGoogle ScholarPubMed
Sousa-Figueiredo, J. C., Betson, M. & Stothard, J. R. 2012. Treatment of schistosomiasis in African infants and preschool-aged children: downward extension and biometric optimization of the current praziquantel dose pole. Int Health, 4, 95102.10.1016/j.inhe.2012.03.003CrossRefGoogle ScholarPubMed
Stothard, J. R., Chitsulo, L., Kristensen, T. K. & Utzinger, J. 2009. Control of schistosomiasis in sub-Saharan Africa: progress made, new opportunities and remaining challenges. Parasitology, 136, 1665–75.10.1017/S0031182009991272CrossRefGoogle ScholarPubMed
Utzinger, J., Becker, S. L., Van Lieshout, L., Van Dam, G. J. & Knopp, S. 2015. New diagnostic tools in schistosomiasis. Clin Microbiol Infect, 21, 529–42.10.1016/j.cmi.2015.03.014CrossRefGoogle ScholarPubMed
Van Dam, G. J., Wichers, J. H., Ferreira, T. M. et al. 2004. Diagnosis of schistosomiasis by reagent strip test for detection of circulating cathodic antigen. J Clin Microbiol, 42, 5458–61.10.1128/JCM.42.12.5458-5461.2004CrossRefGoogle ScholarPubMed
Webb, E. L., Edielu, A., Wu, H. W. et al. 2021. The praziquantel in preschoolers (PIP) trial: study protocol for a phase II PK/PD-driven randomised controlled trial of praziquantel in children under 4 years of age. Trials, 22, 601.10.1186/s13063-021-05558-1CrossRefGoogle ScholarPubMed
WHO 1997. International Agency for Research on Cancer: Monographs on the evaluation of carcinogenic risks to humans. schistosomes, liver flukes and Helicobacter pylori.Google Scholar
WHO 2003. Report of the WHO Informal Consultation on the use of praziquantel during pregnancy and albendazole/mebendazole in children under 24 months. WHO/CDC/CPE/PVC/2002.4. Geneva: WHO.Google Scholar
WHO 2006. Preventive Chemotherapy in human helminthiasis. Geneva: WHO.Google Scholar
WHO 2015. Female genital schistosomiasis: a pocket atlas for clinical health-care professionals. Geneva: WHO.Google Scholar
WHO 2021. Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030. Geneva: WHO.Google Scholar

References

Beng, A. A., Esum, M. E., Deribe, K. et al. 2020. Mapping lymphatic filariasis in Loa loa endemic health districts naive for ivermectin mass administration and situated in the forested zone of Cameroon. BMC Infect Dis, 20, 284.10.1186/s12879-020-05009-3CrossRefGoogle ScholarPubMed
Betts, H., Martindale, S., Chiphwanya, J. et al. 2020. Significant improvement in quality of life following surgery for hydrocoele caused by lymphatic filariasis in Malawi: a prospective cohort study. PLoS Negl Trop Dis, 14, e0008314.10.1371/journal.pntd.0008314CrossRefGoogle ScholarPubMed
Bockarie, M.J., Pedersen, E.M., White, G.B. & Michael, E. 2009. Role of vector control in the global program to eliminate lymphatic filariasis. Annu Rev Entomol, 54, 469–87.10.1146/annurev.ento.54.110807.090626CrossRefGoogle ScholarPubMed
Boussinesq, M. 2012. Loiasis: new epidemiologic insights and proposed treatment strategy. J Travel Med, 19, 140–3.10.1111/j.1708-8305.2012.00605.xCrossRefGoogle ScholarPubMed
Boussinesq, M., Gardon, J., Gardon-Wendel, N. & Chippaux, J. P. 2003. Clinical picture, epidemiology and outcome of Loa-associated serious adverse events related to mass ivermectin treatment of onchocerciasis in Cameroon. Filaria J, 2 Suppl. 1, S4.10.1186/1475-2883-2-S1-S4CrossRefGoogle ScholarPubMed
Bowler, G. S., Shah, A. N., Bye, L. A. & Saldana, M. 2011. Ocular loiasis in London 2008–2009: a case series. Eye (Lond), 25, 389–91.10.1038/eye.2010.192CrossRefGoogle ScholarPubMed
Dietrich, C. F., Chaubal, N., Hoerauf, A. et al. 2019. Review of dancing parasites in lymphatic filariasis. Ultrasound Int Open, 5, E6574.Google ScholarPubMed
Gardon, J., Gardon-Wendel, N., Demanga, N., Kamgno, J., Chippaux, J. P. & Boussinesq, M. 1997. Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet, 350, 1822.10.1016/S0140-6736(96)11094-1CrossRefGoogle Scholar
Hoerauf, A. 2008. Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis, 21, 673–81.10.1097/QCO.0b013e328315cde7CrossRefGoogle ScholarPubMed
Kamgno, J., Pion, S. D., Chesnais, C. B. et al. 2017. A test-and-not-treat strategy for onchocerciasis in Loa loa-endemic areas. N Engl J Med, 377, 20442052.10.1056/NEJMoa1705026CrossRefGoogle ScholarPubMed
Local Burden of Disease Neglected Tropical Diseases 2020. The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis. Lancet Glob Health, 8, e1186e1194.10.1016/S2214-109X(20)30286-2CrossRefGoogle Scholar
MacKenzie, C. D. & Mante, S. 2020. Caring for patients in the global programme to eliminate lymphatic filariasis. Int Health, 13, S48S54.10.1093/inthealth/ihaa080CrossRefGoogle ScholarPubMed
Mand, S., Debrah, A. Y., Klarmann, U. et al. 2012. Doxycycline improves filarial lymphedema independent of active filarial infection: a randomized controlled trial. Clin Infect Dis, 55, 621–30.10.1093/cid/cis486CrossRefGoogle ScholarPubMed
Metais, A., Michalak, S. & Rousseau, A. 2021. Albendazole-related Loa loa encephalopathy. IDCases, 23, e01033.10.1016/j.idcr.2020.e01033CrossRefGoogle ScholarPubMed
Pion, S. D., Montavon, C., Chesnais, C. B. et al. 2016. Positivity of antigen tests used for diagnosis of lymphatic filariasis in individuals without Wuchereria bancrofti infection but with high Loa loa microfilaremia. Am J Trop Med Hyg, 95, 14171423.10.4269/ajtmh.16-0547CrossRefGoogle ScholarPubMed
Simonsen, P. E., Fischer, P. U., Hoerauf, A. & Weil, G. J. 2014. The Filariases. In Farrar, J., Hotez, P. J., Junghanss, T., Kang, D., Lalloo, D. & White, N. J. (eds) Manson’s Tropical Diseases. 23rd ed. New York: Elsevier Saunders.Google Scholar
Taylor, M. J., Hoerauf, A. & Bockarie, M. 2010. Lymphatic filariasis and onchocerciasis. Lancet, 376, 1175–85.10.1016/S0140-6736(10)60586-7CrossRefGoogle ScholarPubMed
Taylor, M. J., Makunde, W. H., Mcgarry, H. F., Turner, J. D., Mand, S. & Hoerauf, A. 2005. Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet, 365, 2116–21.10.1016/S0140-6736(05)66591-9CrossRefGoogle ScholarPubMed
Wanji, S., Akotshi, D. O., Mutro, M. N. et al. 2012. Validation of the rapid assessment procedure for loiasis (RAPLOA) in the Democratic Republic of Congo. Parasit Vectors, 5, 25.10.1186/1756-3305-5-25CrossRefGoogle ScholarPubMed
Wanji, S., Amvongo-Adjia, N., Njouendou, A. J. et al. 2016. Further evidence of the cross-reactivity of the Binax NOW(R) Filariasis ICT cards to non-Wuchereria bancrofti filariae: experimental studies with Loa loa and Onchocerca ochengi. Parasit Vectors, 9, 267.10.1186/s13071-016-1556-8CrossRefGoogle Scholar
WHO 2017. Guideline: alternative mass drug administration regimens to eliminate lymphatic filariasis. Geneva: WHO.Google Scholar
Zouré, H. G., Wanji, S., Noma, M. et al. 2011. The geographic distribution of Loa loa in Africa: results of large-scale implementation of the Rapid Assessment Procedure for loiasis (RAPLOA). PLoS Negl Trop Dis, 5, e1210.10.1371/journal.pntd.0001210CrossRefGoogle ScholarPubMed

References

Abbafati, C., Abbas, K.M., Abbasi, M. et al. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet; 396: 1204–22. doi: 10.1016/S0140-6736(20)30925-9.Google Scholar
Abiose, A., Jones, B.R., Cousens, S.N. et al. (1993). Reduction in incidence of optic nerve disease with annual ivermectin to control onchocerciasis. Lancet; 341: 130–4. doi: 10.1016/0140-6736(93)90002-X.CrossRefGoogle ScholarPubMed
Ali, M.M., Baraka, O.Z., AbdulRahman, S.I. et al. (2003). Immune responses directed against microfilariae correlate with severity of clinical onchodermatitis and treatment history. J Infect Dis; 187: 714–17.10.1086/367709CrossRefGoogle ScholarPubMed
Allen, J.E., Adjei, O., Bain, O. et al. (2008). Of mice, cattle and humans: the immunology and treatment of river blindness. PLoS Negl Trop Dis; 2 (4): e217. doi: 10.1371/journal.pntd.0000217.CrossRefGoogle ScholarPubMed
Awadzi, K., Boakye, D.A., Edwards, G. et al. (2004). An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasisendemic foci in Ghana. Ann Trop Med Parasitol; 98: 231–49.10.1179/000349804225003253CrossRefGoogle ScholarPubMed
Babaloa, O.E., Bassi, A. (2017). Impact assessment study after 27 years of community-directed treatment with ivermectin in Galadimawa, Kaduna State, Nigeria. Niger Postgrad Med J; 24(1): 1419.10.4103/npmj.npmj_6_17CrossRefGoogle Scholar
Brieger, W.R., Awedoba, A.K., Eneanya, C.I. et al. (1998). The effects of ivermectin on onchocercal skin disease and severe itching: results of a multicentre trial. Trop Med Int Health; 3: 951–61. doi: 10.1046/j.1365-3158.1998.00339.x.CrossRefGoogle ScholarPubMed
Chesnais, C.B., Bizet, C,. Campillo, J.T. et al. (2020). A second population-based cohort study in Cameroon confirms the temporal relationship between onchocerciasis and epilepsy. Open Forum Infect Dis; 7(6): ofaa206. doi: 10.1093/ofid/ofaa206.CrossRefGoogle ScholarPubMed
Chippaux, J.P., Boussinesq, M., Fobi, G. et al. (1999). Effect of repeated ivermectin treatments on ocular onchocerciasis: evaluation after six to eight doses. Ophth Epidemiol; 6: 229–46. doi: 10.1076/opep.6.4.229.4185.Google ScholarPubMed
Coffeng, L.E., Stolk, W.A., Zouré, , H.G.M. et al. (2014). African Programme for Onchocerciasis Control 1995–2015: updated health impact estimates based on new disability weights. PLoS Negl Trop Dis; 8(6): e2759. doi: 10.1371/journal.pntd.0002759.CrossRefGoogle ScholarPubMed
Cousens, S.N., Cassels-Brown, A., Murdoch, I. et al. (1997). Impact of annual dosing with ivermectin on progression of onchocercal visual field loss. Bull World Health Organ; 75(3): 229–36.Google ScholarPubMed
Dadzie, Y., Amazigo, U.V., Boatin, B.A. et al. (2018). Is onchocerciasis elimination in Africa feasible by 2025: a perspective based on lessons learnt from the African control programmes. Infect Dis Pov; 7: 63. doi: 10.1186/s40249-018-0446-z.CrossRefGoogle ScholarPubMed
Diawara, L., Traoré, M.O., Badji, A. et al. (2009). Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. PLoS Negl Trop Dis; 3(7): e497. doi: 10.1371/journal.pntd.0000497.CrossRefGoogle ScholarPubMed
Emukah, E.C., Osuoha, E., Miri, E.S. et al. (2004). A longitudinal study of impact of repeated mass ivermectin treatment on clinical manifestations of onchocerciasis in Imo State, Nigeria. Am J Trop Med Hyg; 70: 556–61.10.4269/ajtmh.2004.70.556CrossRefGoogle ScholarPubMed
Hoerauf, A. (2008). Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis; 21: 673–81. doi: 10.1097/QCO.0b013e328315cde7.CrossRefGoogle ScholarPubMed
Hougard, J.M., Alley, E.S., Yaméogo, L. et al. (2001). Eliminating onchocerciasis after 14 years of vector control: a proved strategy. J Infect Dis; 184: 497503. doi: 10.1086/322789.CrossRefGoogle ScholarPubMed
Kamgno, J, Pion, S.D., Chesnais, C.B. et al. (2017). A test-and-not-treat strategy for onchocerciasis in Loa loa-endemic areas. New Eng J Med; 377: 2044–52. doi: 10.1056/NEJMoa1705026.CrossRefGoogle ScholarPubMed
Little, M.P., Breitling, L.P., Basáñez, M.-G. et al. (2004). Association between microfilarial load and excess mortality in onchocerciasis: an epidemiological study. Lancet; 363: 1514–21. doi: 10.1016/S0140-6736(04)16151-5.CrossRefGoogle ScholarPubMed
Murdoch, M.E. (1992). The skin and the immune repsonse in onchocerciasis. Trop Doct; 22 (suppl. 1): 4455.10.1177/00494755920220S109CrossRefGoogle Scholar
Murdoch, M.E. (2008). Skin signs of onchocerciasis. J Community Dermatol; 5: 1620.Google Scholar
Murdoch, M.E., Hay, R.J., Mackenzie, C.D. et al. (1993). A clinical classification and grading system of the cutaneous changes in onchocerciasis. Brit J Dermatol; 129: 260–9. doi: 10.1111/j.1365-2133.1993.tb11844.x.CrossRefGoogle ScholarPubMed
Murdoch, M.E., Abiose, A., Garate, T. et al. (1996). Human onchocerciasis in Nigeria: isotypic responses and antigen recognition in individuals with defined cutaneous pathology. Am J Trop Med Hyg; 54: 600–12. doi: 10.4269/ajtmh.1996.54.600.CrossRefGoogle ScholarPubMed
Murdoch, M.E., Asuzu, M., Hagan, C., M. et al. (2002). Onchocerciasis: the clinical and epidemiological burden of skin disease in Africa. Ann Trop Med Parasitol; 96: 283–96. doi: 10.1179/000349802125000826.CrossRefGoogle ScholarPubMed
Opoku, N.O., Bakajika, D.K., Kanza, E.M. et al. (2018). Single dose moxidectin versus ivermectin for Onchocerca volvulus infection in Ghana, Liberia, and the Democratic Republic of the Congo: a randomised, controlled, double-blind phase 3 trial. Lancet; 392: 1207–16. doi: 10.1016/S0140-6736(17)32844-1.CrossRefGoogle ScholarPubMed
Ottesen, E.A. (1995). Immune responsiveness and the pathogenesis of human onchocerciasis. J Infect Dis; 171: 659–71. doi: 10.1093/infdis/171.3.659.CrossRefGoogle ScholarPubMed
Ozoh, G.A., Boussinesq, M., Bissek, A.-C. et al. (2007). Evaluation of the diethylcarbamazine patch to evaluate onchocerciasis endemicity in Central Africa. Trop Med Int Health; 12: 123–9. doi: 10.1111/j.1365-3158.2006.01750.x.CrossRefGoogle ScholarPubMed
Ozoh, G.A., Murdoch, M.E., Bissek, A.-C. et al. (2011). The African Programme for Onchocerciasis Control: impact on onchocercal skin disease. Trop Med Int Health; 16: 875–83. doi: 10.1111/j.1365-3158.2011.02783.x.CrossRefGoogle ScholarPubMed
Pion, S.D.S., Kaiser, C., Boutros-Toni, F. et al. (2009). Epilepsy in onchocerciasis endemic areas: systematic review and meta-analysis of population-based surveys. PLoS Negl Trop Dis; 3: e461. doi: 10.1371/journal.pntd.0000461.CrossRefGoogle ScholarPubMed
Saint André, A, Blackwell, N.M., Hall L.R. et al. (2002). The role of endosymbiotic Wolbachia bacteria in the pathogenesis of onchocerciasis. Science; 295: 1892–5.Google Scholar
Timmann, C., Abraha, R.S., Hamelmann, C. et al. (2003). Cutaneous pathology in onchocerciasis associated with pronounced systemic T-helper 2-type responses to Onchocerca volvulus. Brit J Dermatol; 149: 782–7. doi: 10.1046/j.1365-2133.2003.05558.x.CrossRefGoogle ScholarPubMed
Unnasch, T.R., Golden, A., Cama, V. et al. (2018). Diagnostics for onchocerciasis in the era of elimination. Int Health; 10(suppl. 1): i20–6. doi: 10.1093/inthealth/ihx047.CrossRefGoogle ScholarPubMed
WHO (2015). African Programme for Onchocerciasis Control: progress report, 2014–2015. Wkly Epid Rec; 90(49): 661–74.Google Scholar
WHO (2016). Guidelines for stopping mass drug administration and verifying elimination of human onchocerciasis: criteria and procedures. Geneva: WHO. http://apps.who.int/iris/bitstream/10665/204180/1/9789241510011_eng.pdf?ua=1.Google Scholar
WHO (2020). Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030. Geneva: WHO. https://www.who.int/publications/i/item/9789240010352.Google Scholar
Yang, Y.F., Murdoch, I.E., Cousens, S. et al. (2001). Intraocular pressure and gonioscopic findings in rural communities mesoendemic and nonendemic for onchocerciasis, Kaduna State, Nigeria. Eye; 15: 756–9. doi: 10.1038/eye.2001.244.CrossRefGoogle ScholarPubMed
Zimmerman, P.A., Guderian, R.H., Aruajo, E. et al. (1994). Polymerase chain reaction-based diagnosis of Onchocerca volvulus infection: improved detection of patients with onchocerciasis. J Infect Dis; 169: 686–9.10.1093/infdis/169.3.686CrossRefGoogle ScholarPubMed

References

Callacondo, D., Garcia, H.H., Gonzales, I., Escalante, D., Nash, T.E.; Cysticercosis Working Group in Peru. 2012. High frequency of spinal involvement in patients with basal subarachnoid neurocysticercosis. Neurology 78, 13941400. doi.org/10.1212/WNL.0b013e318253d641.CrossRefGoogle ScholarPubMed
Carabin, H., Ndimubanzi, P.C., Budke, C.M. et al. 2011. Clinical manifestations associated with neurocysticercosis: a systematic review. PLoS Negl. Trop. Dis. 5, e1152. doi.org/10.1371/journal.pntd.0001152.CrossRefGoogle ScholarPubMed
Carabin, H., Winkler, A.S., Dorny, P. 2017. Taenia solium cysticercosis and taeniosis: achievements from the past 10 years and the way forward. PLoS Negl. Trop. Dis. 11, e0005478. doi.org/10.1371/journal.pntd.0005478.CrossRefGoogle ScholarPubMed
Carpio, A., Fleury, A., Romo, M.L. et al. 2016. New diagnostic criteria for neurocysticercosis: reliability and validity. Ann. Neurol. 80, 434–42. doi.org/10.1002/ana.24732.CrossRefGoogle ScholarPubMed
Garcia, H.H., Del Brutto, O.H. 2003. Imaging findings in neurocysticercosis. Acta Trop. 87, 71–8.10.1016/S0001-706X(03)00057-3CrossRefGoogle ScholarPubMed
Garcia, H. H., Gonzales, I., Lescano, A.G. et al. 2014a. Enhanced steroid dosing reduces seizures during antiparasitic treatment for cysticercosis and early after. Epilepsia 55, 1452–9. doi.org/10.1111/epi.12739.CrossRefGoogle ScholarPubMed
Garcia, Hector H., Gonzales, I., Lescano, A.G. et al.; Cysticercosis Working Group in Peru. 2014b. Efficacy of combined antiparasitic therapy with praziquantel and albendazole for neurocysticercosis: a double-blind, randomised controlled trial. Lancet Infect. Dis. 14, 687695. doi.org/10.1016/S1473-3099(14)70779-0.CrossRefGoogle ScholarPubMed
García, H.H., Gonzalez, A.E., Rodriguez, S. et al.; Cysticercosis Working Group in Peru, 2010. Neurocysticercosis: unraveling the nature of the single cysticercal granuloma. Neurology 75, 654–8. doi.org/10.1212/WNL.0b013e3181ed9eae.CrossRefGoogle ScholarPubMed
Jewell, P.D., Abraham, A., Schmidt, V. et al. 2021. Neurocysticercosis and HIV/AIDS co-infection: a scoping review. Trop. Med. Int. Health. doi.org/10.1111/tmi.13652.CrossRefGoogle Scholar
Komba, E.V.G., Kimbi, E.C., Ngowi, H.A. et al. 2013. Prevalence of porcine cysticercosis and associated risk factors in smallholder pig production systems in Mbeya region, southern highlands of Tanzania. Vet. Parasitol. 198, 284–91. doi.org/10.1016/j.vetpar.2013.09.020.CrossRefGoogle ScholarPubMed
Mwanjali, G., Kihamia, C., Kakoko, D. et al. 2013. Prevalence and risk factors associated with human Taenia solium infections in Mbozi District, Mbeya Region, Tanzania. PLoS Negl. Trop. Dis. 7, e2102.10.1371/journal.pntd.0002102CrossRefGoogle ScholarPubMed
Prado-Jean, A., Kanobana, K., Druet-Cabanac, M. et al. 2007. Combined use of an antigen and antibody detection enzyme-linked immunosorbent assay for cysticercosis as tools in an epidemiological study of epilepsy in Burundi. Trop. Med. Int. Health 12, 895901. doi.org/10.1111/j.1365-3156.2007.01860.x.CrossRefGoogle Scholar
Sotelo, J., Del Brutto, O.H. 2002. Review of neurocysticercosis. Neurosurg. Focus 12, e1. doi.org/10.3171/foc.2002.12.6.2.CrossRefGoogle ScholarPubMed
White, A.C., Coyle, C.M., Rajshekhar, V. et al. 2018. Diagnosis and treatment of neurocysticercosis: 2017 Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc.Am. 66, e49e75. doi.org/10.1093/cid/cix1084.CrossRefGoogle Scholar
WHO 2015. Landscape analysis: management of neurocysticercosis with an emphasis on low- and middle-incomecountries. Geneva: WHO.Google Scholar
Winkler, A.S., 2012. Neurocysticercosis in sub-Saharan Africa: a review of prevalence, clinical characteristics, diagnosis, and management. Pathog. Glob. Health 106, 261–74. doi.org/10.1179/2047773212Y.0000000047.CrossRefGoogle ScholarPubMed

References

Akhan, O, Salik, AE, Ciftci, T, Akinci, D, Islim, F, Akpinar, B. Comparison of long-term results of percutaneous treatment techniques for hepatic cystic echinococcosis types 2 and 3b. Am J Roentgenol. 2017;208(4):878–84. doi: 10.2214/AJR.16.16131.CrossRefGoogle ScholarPubMed
Amarir, F, Rhalem, A, Sadak, A et al. Control of cystic echinococcosis in the Middle Atlas, Morocco: field evaluation of the EG95 vaccine in sheep and cesticide treatment in dogs. PLoS Negl Trop Dis. 2021;15(3):e0009253. doi: 10.1371/journal.pntd.0009253.CrossRefGoogle ScholarPubMed
Arif, SH, Shams-Ul-Bari, Wani NA et al. Albendazole as an adjuvant to the standard surgical management of hydatid cyst liver. Int J Surg. 2008;6(6):448–51. doi: 10.1016/j.ijsu.2008.08.003.CrossRefGoogle Scholar
Bélard, S, Tamarozzi, F, Bustinduy, AL et al. Point-of-care ultrasound assessment of tropical infectious diseases – a review of applications and perspectives. Am J Trop Med Hyg. 2016;94(1):821. doi: 10.4269/ajtmh.15-0421.CrossRefGoogle Scholar
Brunetti, E, Kern, P, Vuitton, DA; Writing Panel for the WHO-IWGE. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Trop. 2010;114(1):116. doi: 10.1016/j.actatropica.2009.11.001.CrossRefGoogle ScholarPubMed
Cobo, F, Yarnoz, C, Sesma, B, Fraile, P et al. Albendazole plus praziquantel versus albendazole alone as a pre-operative treatment in intra-abdominal hydatisosis caused by Echinococcus granulosus. Trop Med Int Health. 1998;3(6):462–6. doi: 10.1046/j.1365-3156.1998.00257.x.CrossRefGoogle ScholarPubMed
Gargouri, M, Ben Amor, N, Ben Chehida, F et al. Percutaneous treatment of hydatid cysts (Echinococcus granulosus). Cardiovasc Intervent Radiol. 1990;13(3):169–73. doi: 10.1007/BF02575469.CrossRefGoogle ScholarPubMed
Gil-Grande, LA, Rodriguez-Caabeiro, F, Prieto, JG et al. Randomised controlled trial of efficacy of albendazole in intra-abdominal hydatid disease. Lancet. 1993;342(8882):1269–72. doi: 10.1016/0140-6736(93)92361-v.Google Scholar
Menezes da Silva, A. Hydatid cyst of the liver-criteria for the selection of appropriate treatment. Acta Trop. 2003;85(2):237–42. doi: 10.1016/s0001-706x(02)00271-1.CrossRefGoogle ScholarPubMed
Neumayr, A, Troia, G, de Bernardis C, et al. Justified concern or exaggerated fear: the risk of anaphylaxis in percutaneous treatment of cystic echinococcosis – a systematic literature review. PLoS Negl Trop Dis. 2011;5(6):e1154. doi: 10.1371/journal.pntd.0001154.CrossRefGoogle ScholarPubMed
Richards, KS, Riley, EM, Taylor, DH, Morris, DL. Studies on the effect of short term, high dose praziquantel treatment against protoscoleces of ovine and equine Echinococcus granulosus within the cyst, and in vitro. Trop Med Parasitol. 1988;39(4):269–72. PMID: 3227231.Google ScholarPubMed
Saadi, A, Amarir, F, Filali, H, Thys, S et al. The socio-economic burden of cystic echinococcosis in Morocco: a combination of estimation method. PLoS Negl Trop Dis. 2020;14(7):e0008410. doi: 10.1371/journal.pntd.0008410.CrossRefGoogle Scholar
Solomon, N, Zeyhle, E, Carter, J et al. Cystic echinococcosis in Turkana, Kenya: the role of cross-sectional screening surveys in assessing the prevalence of human infection. Am J Trop Med Hyg. 2017;97(2):587–95. doi: 10.4269/ajtmh.16-0643.CrossRefGoogle ScholarPubMed
Stojkovic, M, Rosenberger, KD, Steudle, F, Junghanss, T. Watch and wait management of inactive cystic echinococcosis – does the path to inactivity matter – analysis of a prospective patient cohort. PLoS Negl Trop Dis. 2016;10(12):e0005243. doi: 10.1371/journal.pntd.0005243.CrossRefGoogle ScholarPubMed
Torgerson, PR, Devleesschauwer, B, Praet, N et al. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med. 2015;12(12):e1001920. doi: 10.1371/journal.pmed.1001920.CrossRefGoogle ScholarPubMed
Vuitton, DA, McManus, DP, Rogan, MT et al.; World Association of Echinococcosis. International consensus on terminology to be used in the field of echinococcoses. Parasite 2020;27:41. doi: 10.1051/parasite/2020024.CrossRefGoogle ScholarPubMed
WHO Informal Working Group. International classification of ultrasound images in cystic echinococcosis for application in clinical and field epidemiological settings. Acta Trop. 2003;85(2):253–61. doi: 10.1016/s0001-706x(02)00223-1.Google Scholar

References

Appleton, C. C. 2014. Paragonimiasis in KwaZulu-Natal Province, South Africa. J Helminthol, 88, 123–8.10.1017/S0022149X12000831CrossRefGoogle ScholarPubMed
Chai, J. Y. 2013. Paragonimiasis. Handb Clin Neurol, 114, 283–96.CrossRefGoogle ScholarPubMed
Cumberlidge, N., Rollinson, D., Vercruysse, J., Tchuente, Tchuem, Webster, L. A., B. & Clark, P. F. 2018. Paragonimus and paragonimiasis in West and Central Africa: unresolved questions. Parasitology, 145, 1748–57.10.1017/S0031182018001439CrossRefGoogle ScholarPubMed
Rabone, M., Wiethase, J., Clark, P. F., Rollinson, D., Cumberlidge, N. & Emery, A. M. 2021. Endemicity of Paragonimus and paragonimiasis in Sub-Saharan Africa: a systematic review and mapping reveals stability of transmission in endemic foci for a multi-host parasite system. PLoS Negl Trop Dis, 15, e0009120.10.1371/journal.pntd.0009120CrossRefGoogle ScholarPubMed
WHO. 2021. Foodborne parasitic infections: Paragonimiasis (lung fluke).Geneva. www.who.int/publications/i/item/WHO-UCN-NTD-VVE-2021.5.Google Scholar

References

Bruschi, F, Murrell, K (2002). New aspects of human trichinellosis: the impact of new Trichinella species. Postgrad Med J; 78, 1522.10.1136/pmj.78.915.15CrossRefGoogle ScholarPubMed
Devleesschauwer, B, Praet, N, Speybroeck, N et al. (2015). The low global burden of trichinellosis: evidence and implications. Int J Parasitol; 45, 95–9.10.1016/j.ijpara.2014.05.006CrossRefGoogle ScholarPubMed
Dupouy-Camet, J, Murrell KD (2007). FAO/WHO/OIE guidelines for the surveillance, management, prevention and control of trichinellosis, 3769. Paris: OIE.Google Scholar
Gottstein, B, Pozio, E, Nockler, K (2009). Epidemiology, diagnosis, treatment and control of trichinellosis. Clin Micro Rev; 22, 127–45.10.1128/CMR.00026-08CrossRefGoogle ScholarPubMed
Mukaratirwa, S, La Grange, L, Pfukenyi, DM. (2013). Trichinella infections in animals and humans in sub-Saharan Africa: a review. Acta Trop; 125, 82–9.10.1016/j.actatropica.2012.09.005CrossRefGoogle ScholarPubMed
Murrell, KD, Pozio, E (2011). Worldwide occurrence and impact of human trichinellosis, 1986–2009. Emerging Infectious Diseases; 17, 2194–202.10.3201/eid1712.110896CrossRefGoogle ScholarPubMed
Watt, G, Saisorn, S, Jongsakul, K, Sakolvaree, Y, Chaicumpa, W (2000). Blinded, placebo-controlled trial of antiparasitic drugs for trichinellosis myositis. J Infect Dis; 182, 371–4.10.1086/315645CrossRefGoogle ScholarPubMed

References

Biswas, G., Sankara, D.P., Agua-Agum, J. & Maiga, A. 2013. Dracunculiasis (Guinea worm disease): eradication without a drug or a vaccine. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1623), 20120146.10.1098/rstb.2012.0146CrossRefGoogle ScholarPubMed
Cairncross, S., Muller, R. & Zagaria, N., 2002. Dracunculiasis (Guinea worm disease) and the eradication initiative. Clinical Microbiology Reviews, 15(2), 223246.10.1128/CMR.15.2.223-246.2002CrossRefGoogle ScholarPubMed
CDC, Guinea Worm Wrap-up #284 Memorandum, 26 January 2022.WHO Collaborating Center for Dracunculiasis Eradication, CDC.Google Scholar
Chippaux, J.P. 1991. Mebendazole treatment of dracunculiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 85(2), 280.10.1016/0035-9203(91)90056-5CrossRefGoogle ScholarPubMed
Eberhard, M.L., Ruiz-Tiben, E., Hopkins, D.R. et al. 2014. The peculiar epidemiology of dracunculiasis in Chad. American Journal of Tropical Medicine and Hygiene, 90(1), 61.10.4269/ajtmh.13-0554CrossRefGoogle ScholarPubMed
Eberhard, M.L., Thiele, E.A., Yembo, G.E., Yibi, M.S., Cama, V.A. & Ruiz-Tiben, E. 2015. Case report: thirty-seven human cases of sparganosis from Ethiopia and South Sudan caused by Spirometra spp. American Journal of Tropical Medicine and Hygiene, 93(2), 350.10.4269/ajtmh.15-0236CrossRefGoogle Scholar
World Health Organization (WHO). 2009. Temephos in drinking-water: use for vector control in drinking-water sources and containers. WHO Guidelines for Drinking-Water Quality. WHO/HSE/WSH/09.01/1.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×