Published online by Cambridge University Press: 14 August 2009
Introduction to wavelets and prewavelets
Already in the previous chapter we have discussed in what cases L2-approximants or other smoothing methods such as quasi-interpolation or smoothing splines with radial basis functions are needed and suitable for approximation in practice, in particular when data or functions f underlying the data are at the beginning not very smooth or must be smoothed further during the computation. The so-called wavelet analysis that we will introduce now is a further development in the general context of L2-methods, and indeed everything we say here will concern L2-functions, convergence in the L2-norm etc. only. Many important books have been written on wavelets before, and since this is not at all a book on wavelets, we will be fairly short here. The reader who is interested in the specific theory of wavelets is directed to one of the excellent works on wavelets mentioned in the bibliography, for instance the books by Chui, Daubechies, Meyer and others. Here, our modest goal is to describe what wavelets may be considered as in the context of radial basis functions. The radial basis functions turn out to be useful additions to the theory of wavelets because of the versatility of the available radial basis functions.
Given a square-integrable function f on ℝ, say, the aim of wavelet analysis is to decompose it simultaneously into its time and its frequency components.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.