Published online by Cambridge University Press: 12 June 2025
The theoretical foundation of functional programming is the Curry-Howard correspondence, also known as the propositions as types paradigm. Types in simply typed lambda calculus correspond to propositions in intuitionistic logic: function types correspond to logical implications, and product types correspond to logical conjunctions. Not only that, programs correspond to proofs and computation corresponds to a procedure of cut elimination or proof normalisation in which proofs are progressively simplified. The Curry-Howard view has proved to be robust and general and has been extended to varied and more powerful type systems and logics. In one of these extensions the language is a form of pi calculus and the logic is linear logic, with its propositions interpreted as session types. In this chapter we present this system and its key results.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.