Published online by Cambridge University Press: 05 June 2012
Introduction
Many hypersonic vehicles are designed to follow trajectories that extend well into the upper atmosphere where the density is extremely low. Despite this, aerodynamic heating is still a critical issue because of the very high flight velocity. The U.S. Space Shuttle Orbiter, for instance, experienced peak heating at a height of about 74 km even though ambient density at that altitude is not much more than one millionth of sea-level density. Shock wave–boundary-layer interactions (SBLIs) that occur within these flows are nearly always sites of intense localized heating; thus, it is essential to predict the level correctly to avoid vehicle structural failure or incurring unnecessary weight penalties by carrying excessive thermal protection.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.