Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-18T19:20:17.790Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2025

Veit Elser
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Solving Problems with Projections
From Phase Retrieval to Packing
, pp. 364 - 369
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Amit, Daniel J, Gutfreund, Hanoch, and Sompolinsky, Haim. 1985. Spin-glass models of neural networks. Physical Review A, 32(2), 1007–1018.CrossRefGoogle ScholarPubMed
Andersen, Hans Christian. 2008. The Annotated Hans Christian Andersen. WW Norton & Company.Google Scholar
Anderson, Philip W. 1988. Spin glass III: Theory raises its head. Physics Today, 41(6), 9–11.CrossRefGoogle Scholar
Aragón Artacho, Francisco J., Campoy, Rubén, and Tam, Matthew K. 2020. The Douglas–Rachford algorithm for convex and nonconvex feasibility problems. Mathematical Methods of Operations Research, 91, 201–240.CrossRefGoogle Scholar
Ball, Keith. 1992. A lower bound for the optimal density of lattice packings. International Mathematics Research Notices, 1992(10), 217–221.CrossRefGoogle Scholar
Bang, Thøger. 1951. A solution of the “plank problem.” Proceedings of the American Mathematical Society, 2(6), 990–993.Google Scholar
Baumert, Leonard D. 1969. Difference sets. SIAM Journal on Applied Mathematics, 17(4), 826–833.CrossRefGoogle Scholar
Bauschke, Heinz H., and Borwein, Jonathan M. 1993. On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Analysis, 1, 185–212.CrossRefGoogle Scholar
Bauschke, Heinz H., and Moursi, Walaa M. 2017. On the Douglas–Rachford algorithm. Mathematical Programming, 164, 263–284.CrossRefGoogle Scholar
Bauschke, Heinz H., Combettes, Patrick L., and Luke, D. Russell. 2002. Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization. Journal of the Optical Society of America A, 19(7), 1334–1345.CrossRefGoogle ScholarPubMed
Best, M. 1980. Binary codes with a minimum distance of four (Corresp.). IEEE Transactions on Information Theory, 26(6), 738–742.CrossRefGoogle Scholar
Birkhoff, Garrett. 1946. Three observations on linear algebra. Universidad Nacional de Tucuman, Review Series A, 5, 147–151.Google Scholar
Boyd, Stephen, Parikh, Neal, Chu, Eric, Peleato, Borja, Eckstein, Jonathan, et al. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1–122.Google Scholar
Bozóki, Sándor, Lee, Tsung-Lin, and Rónyai, Lajos. 2015. Seven mutually touching infinite cylinders. Computational Geometry, 48(2), 87–93.CrossRefGoogle Scholar
Bruck, Yu M., and Sodin, L. G. 1979. On the ambiguity of the image reconstruction problem. Optics Communications, 30(3), 304–308.CrossRefGoogle Scholar
Brunn, Hermann. 1887. Über Ovale und Eiflächen. Akademische Buchdruckerei von R. Straub.Google Scholar
Buhler, Joe, and Reichstein, Zinovy. 2005. Symmetric functions and the phase problem in crystallography. Transactions of the American Mathematical Society, 357(6), 2353–2377.Google Scholar
Burley, Stephen K., Berman, Helen M., Kleywegt, Gerard J., Markley, John L., Nakamura, Haruki, and Velankar, Sameer. 2017. Protein Data Bank (PDB): The single global macromolecular structure archive. Methods and Molecular Biology, 1607, 627–641.Google ScholarPubMed
Campos, Marcelo, Jenssen, Matthew, Michelen, Marcus, and Sahasrabudhe, Julian. 2023. A new lower bound for sphere packing. arXiv preprint arXiv:2312.10026.Google Scholar
Candes, Emmanuel J., Strohmer, Thomas, and Voroninski, Vladislav. 2013. Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. Communications on Pure and Applied Mathematics, 66(8), 1241–1274.CrossRefGoogle Scholar
Casselman, Bill. 2004. The difficulties of kissing in three dimensions. Notices of the American Mathematical Society, 51(8), 884–885.Google Scholar
Cohn, Henry. 2017. A conceptual breakthrough in sphere packing. Notices of the American Mathematical Society, 64, 102–115.CrossRefGoogle Scholar
Cohn, Henry. 2024. Sphere Packing. cohn.mit.edu/sphere-packing.Google Scholar
coloin. 2009. The New Sudoku Players’ Forum. forum.enjoysudoku.com.Google Scholar
Conway, John Horton, and Sloane, Neil James Alexander. 2013. Sphere Packings, Lattices and Groups. Vol. 290. Springer Science & Business Media.Google Scholar
de Launey, Warwick, and Gordon, Daniel M. 2010. On the density of the set of known Hadamard orders. Cryptography and Communications, 2(2), 233–246.CrossRefGoogle Scholar
Demaine, Erik D., and Demaine, Martin L. 2007. Jigsaw puzzles, edge matching, and polyomino packing: Connections and complexity. Graphs and Combinatorics, 23(Suppl 1), 195–208.CrossRefGoogle Scholar
Dill, Ken A. 1985. Theory for the folding and stability of globular proteins. Biochemistry, 24(6), 1501–1509.CrossRefGoogle ScholarPubMed
Dong, Junkai, Elser, Veit, Gyawali, Gaurav, Jee, Kai Yen, Kent-Dobias, Jaron, Mandaiya, Avinash, Renz, Megan, and Su, Yubo. 2021. Glass phenomenology in the hard matrix model. Journal of Statistical Mechanics: Theory and Experiment, 2021(9), 093302.CrossRefGoogle Scholar
Douglas, Jim, and Rachford, Henry H. 1956. On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American Mathematical Society, 82(2), 421–439.CrossRefGoogle Scholar
Dudeney, Henry E. 1958. Amusements in Mathematics. Vol. 473. Courier Corporation.Google Scholar
Dyson, Freeman. 2009. Birds and frogs. Notices of the American Mathematical Society, 56(2), 212–223.Google Scholar
Eckart, Carl, and Young, Gale. 1936. The approximation of one matrix by another of lower rank. Psychometrika, 1(3), 211–218.CrossRefGoogle Scholar
Elser, Veit. 1986. The diffraction pattern of projected structures. Acta Crystallographica Section A: Foundations of Crystallography, 42(1), 36–43.Google Scholar
Elser, Veit. 2003. Phase retrieval by iterated projections. Journal of the Optical Society of America A, 20(1), 40–55.CrossRefGoogle ScholarPubMed
Elser, Veit. 2008. Pauling’s revenge. Philosophical Magazine, 88(1883–1885).CrossRefGoogle Scholar
Elser, Veit. 2017. The complexity of bit retrieval. IEEE Transactions on Information Theory, 64(1), 412–428.Google Scholar
Elser, Veit. 2021. Reconstructing cellular automata rules from observations at nonconsecutive times. Physical Review E, 104(3), 034301.CrossRefGoogle ScholarPubMed
Elser, Veit. 2023. Packing spheres in high dimensions with moderate computational effort. Physical Review E, 108(3), 034117.CrossRefGoogle ScholarPubMed
Elser, Veit, and Gravel, Simon. 2010. Laminating lattices with symmetrical glue. Discrete & Computational Geometry, 43, 363–374.CrossRefGoogle Scholar
Elser, Veit, and Millane, R. P. 2008. Reconstruction of an object from its symmetry-averaged diffraction pattern. Acta Crystallographica Section A: Foundations of Crystallography, 64(2), 273–279.Google ScholarPubMed
Fienup, James R. 1982. Phase retrieval algorithms: A comparison. Applied Optics, 21(15), 2758–2769.CrossRefGoogle ScholarPubMed
Gamow, George. 1988. One, Two, Three … Infinity: Facts and Speculations of Science. Dover Books on Mathematics.Google Scholar
Garris, M.D., Blue, J.L., Candela, G.T., Dimmick, D.L., Geist, J., Grother, P.J., Janet, S.A., and Wilson, C.L. 2024. Optical Recognition of Handwritten Digits. archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits.Google Scholar
Gilpin, William. 2019. Cellular automata as convolutional neural networks. Physical Review E, 100(3), 032402.CrossRefGoogle ScholarPubMed
Golub, Gene H., and Van Loan, Charles F. 2013. Matrix Computations. JHU Press.CrossRefGoogle Scholar
Goscinny, René, and Uderzo, Albert. 1961. Astérix le Gaulois. Hachette Livre.Google Scholar
Gravel, Simon, and Elser, Veit. 2008. Divide and concur: A general approach to constraint satisfaction. Physical Review E, 78(3), 036706.CrossRefGoogle ScholarPubMed
Green, F. 1987. More about NP-completeness in the frustration model of spin-glasses. Operations-Research-Spektrum, 9(3), 161–165.CrossRefGoogle Scholar
Groom, Colin R., and Allen, Frank H. 2014. The Cambridge Structural Database in retrospect and prospect. Angewandte Chemie International Edition, 53(3), 662–671.CrossRefGoogle ScholarPubMed
Haas, Wolfgang. 2008. On the failing cases of the Johnson bound for error-correcting codes. The Electronic Journal of Combinatorics, 15, R55–R55.CrossRefGoogle Scholar
Hales, Thomas C., Harrison, John, McLaughlin, Sean, Nipkow, Tobias, Obua, Steven, and Zumkeller, Roland. 2011. A revision of the proof of the Kepler conjecture. The Kepler Conjecture: The Hales-Ferguson Proof, 341–376.Google Scholar
Hauptman, Herbert A., Guo, D.Y., Xu, Hongliang, and Blessing, Robert H. 2002. Algebraic direct methods for few-atoms structure models. Acta Crystallographica Section A: Foundations of Crystallography, 58(4), 361–369.Google ScholarPubMed
Hlawka, Edmund. 1943. Zur geometrie der zahlen. Mathematische Zeitschrift, 49(1), 285–312.CrossRefGoogle Scholar
Hornik, Kurt. 1991. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251–257.CrossRefGoogle Scholar
Hughston, Lane P., Jozsa, Richard, and Wootters, William K. 1993. A complete classification of quantum ensembles having a given density matrix. Physics Letters A, 183(1), 14–18.CrossRefGoogle Scholar
Inkala, A. 2007. AI Escargot: The Most Difficult Sudoku Puzzle. Lulu.Google Scholar
Johnson, John E., and Olson, Arthur J. 2021. Icosahedral virus structures and the protein data bank. Journal of Biological Chemistry, 296, 1–11.CrossRefGoogle ScholarPubMed
Kamien, Randall D., and Liu, Andrea J. 2007. Why is random close packing reproducible? Physical Review Letters, 99(15), 155501.CrossRefGoogle ScholarPubMed
Karle, J., and Hauptman, H. 1950. The phases and magnitudes of the structure factors. Acta Crystallographica, 3(3), 181–187.CrossRefGoogle Scholar
Karp, Richard M. 1972. Reducibility among Combinatorial Problems. Springer US. Pages 85–103.CrossRefGoogle Scholar
Kingma, Diederik P., and Ba, Jimmy. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.Google Scholar
Knuth, Donald Ervin. 1997. The Art of Computer Programming. Vol. 3. Pearson Education.Google Scholar
Koryo, Miura. 1985. Method of packaging and deployment of large membranes in space. The Institute of Space and Astronautical Science Report, 618, 1–9.Google Scholar
Krivelevich, Michael, Litsyn, Simon, and Vardy, Alexander. 2004. A lower bound on the density of sphere packings via graph theory. International Mathematics Research Notices, 2004(43), 2271–2279.CrossRefGoogle Scholar
Kuhn, Harold W. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1-2), 83–97.CrossRefGoogle Scholar
LeCun, Yann, Cortes, Corinna, and Burges, Christopher J.C. 2024. The MNIST Database. yann.lecun.com/exdb/mnist.Google Scholar
Leland, McInnes, John, Healy, and James, Melville. 2018. Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.Google Scholar
Lin, Keh Ying. 2004. Number of Sudokus. Journal of Recreational Mathematics, 33(2), 120.Google Scholar
Littlewood, John E. 1968. Some Problems in Real and Complex Analysis, Heath Mathematical Monographs. Raytheon Education.Google Scholar
Luke, D. Russell. 2004. Relaxed averaged alternating reflections for diffraction imaging. Inverse Problems, 21(1), 37.CrossRefGoogle Scholar
Marchesini, Stefano, He, H., Chapman, Henry N., Hau-Riege, Stefan P., Noy, Aleksandr, Howells, Malcolm R., Weierstall, Uwe, and Spence, John C. H. 2003. X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68(14), 140101.CrossRefGoogle Scholar
Matoušek, Jiřı́. 2013. Lectures on Discrete Geometry. Vol. 212. Springer Science & Business Media.Google Scholar
Matoušek, Jiřı́, and Gärtner, Bernd. 2007. Understanding and Using Linear Programming. Vol. 1. Springer.Google Scholar
Mertens, Stephan, Mézard, Marc, and Zecchina, Riccardo. 2006. Threshold values of random K-SAT from the cavity method. Random Structures & Algorithms, 28(3), 340–373.CrossRefGoogle Scholar
Miao, Jianwei, Charalambous, Pambos, Kirz, Janos, and Sayre, David. 1999. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400(6742), 342–344.CrossRefGoogle Scholar
Millane, R. P., and Stroud, W. J. 1997. Reconstructing symmetric images from their undersampled Fourier intensities. Journal of the Optical Society of America A, 14(3), 568–579.CrossRefGoogle Scholar
Minkowski, Hermann. 1910. Geometrie der Zahlen. BG Teubner.Google Scholar
Moore, Cristopher, and Mertens, Stephan. 2011. The Nature of Computation. Oxford University Press.CrossRefGoogle Scholar
Musin, Oleg Rustamovich. 2003. The problem of the twenty-five spheres. Uspekhi Matematicheskikh Nauk, 58(4), 153–154.Google Scholar
Neutze, Richard, Wouts, Remco, Van der Spoel, David, Weckert, Edgar, and Hajdu, Janos. 2000. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.CrossRefGoogle ScholarPubMed
OEIS Foundation Inc. 2024a. On-Line Encyclopedia of Integer Sequences. oeis.org/A007299.Google Scholar
OEIS Foundation Inc. 2024b. On-Line Encyclopedia of Integer Sequences. oeis.org/A206711.Google Scholar
OEIS Foundation Inc. 2024c. On-Line Encyclopedia of Integer Sequences. oeis.org/A000609.Google Scholar
oković, Dragomir Ž., Golubitsky, Oleg, and Kotsireas, Ilias S. 2014. Some new orders of Hadamard and Skew-Hadamard matrices. Journal of Combinatorial Designs, 22(6), 270–277.Google Scholar
Ostergard, P. R. J., and Blass, Uri. 2001. On the size of optimal binary codes of length 9 and covering radius 1. IEEE Transactions on Information Theory, 47(6), 2556–2557.CrossRefGoogle Scholar
Paley, Raymond EAC. 1933. On orthogonal matrices. Journal of Mathematics and Physics, 12(1–4), 311–320.CrossRefGoogle Scholar
Pauling, Linus. 1987. So-called icosahedral and decagonal quasicrystals are twins of an 820-atom cubic crystal. Physical Review Letters, 58(4), 365.CrossRefGoogle ScholarPubMed
Renes, Joseph M., Blume-Kohout, Robin, Scott, Andrew J., and Caves, Carlton M. 2004. Symmetric informationally complete quantum measurements. Journal of Mathematical Physics, 45(6), 2171–2180.CrossRefGoogle Scholar
Rodenburg, John, and Maiden, Andrew. 2019. Ptychography, in Springer Handbook of Microscopy. Springer.Google Scholar
Rumelhart, David E., Hinton, Geoffrey E., and Williams, Ronald J. 1985. Learning Internal Representations by Error Propagation. Tech. rept. University of California, San Diego, La Jolla Institute for Cognitive Science.CrossRefGoogle Scholar
Rumelhart, David E., Hinton, Geoffrey E., and Williams, Ronald J. 1986. Learning representations by back-propagating errors. Nature, 323(6088), 533–536.CrossRefGoogle Scholar
Schattschneider, Doris. 1993. Crystalline symmetries: An informal mathematical introduction (Marjorie Senechal). SIAM Review, 35(2), 335–336.CrossRefGoogle Scholar
Schütte, Kurt, and van der Waerden, Bartel Leendert. 1952. Das problem der dreizehn Kugeln. Mathematische Annalen, 125(1), 325–334.CrossRefGoogle Scholar
Scott, Andrew James, and Grassl, Markus. 2010. Symmetric informationally complete positive-operator-valued measures: A new computer study. Journal of Mathematical Physics, 51(4), 042203.CrossRefGoogle Scholar
Senior, Andrew W., Evans, Richard, Jumper, John, Kirkpatrick, James, Sifre, Laurent, Green, Tim, Qin, Chongli, Žı́dek, Augustin, Nelson, Alexander W. R., Bridgland, Alex, et al. 2019. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins: Structure, Function, and Bioinformatics, 87(12), 1141–1148.CrossRefGoogle ScholarPubMed
Shechtman, Dan, Blech, Ilan, Gratias, Denis, and Cahn, John W. 1984. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53(20), 1951.CrossRefGoogle Scholar
Sheldrick, George M. 2008. A short history of SHELX. Acta Crystallographica Section A: Foundations of Crystallography, 64(1), 112–122.Google Scholar
Shen, Zuowei, Yang, Haizhao, and Zhang, Shijun. 2022. Optimal approximation rate of ReLU networks in terms of width and depth. Journal de Mathématiques Pures et Appliquées, 157, 101–135.CrossRefGoogle Scholar
Sidorenko, Alexander. 1995. What we know and what we do not know about Turán numbers. Graphs and Combinatorics, 11(2), 179–199.CrossRefGoogle Scholar
Sinai, Yakov Grigor’evich. 1963. On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics. Pages 1261–1264 of: Doklady Akademii Nauk, vol. 153. Russian Academy of Sciences.Google Scholar
Smale, Steve. 1986. Newton’s method estimates from data at one point. Pages 185–196 of: The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics: Proceedings of a Symposium Held in Honor of Gail S. Young at the University of Wyoming, August 8–10, 1985. Sponsored by the Sloan Foundation, the National Science Foundation, and Air Force Office of Scientific Research. Springer.Google Scholar
Spence, John C. H., Howells, M., Marks, L. D., and Miao, J. 2001. Lensless imaging: a workshop on “New approaches to the phase problem for non-periodic objects.” Ultramicroscopy, 1(90), 1–6.Google Scholar
Springer, Jacob M., and Kenyon, Garrett T. 2021. It’s hard for neural networks to learn the game of life. Pages 1–8 of: 2021 International Joint Conference on Neural Networks (IJCNN). IEEE.Google Scholar
Stuart, Andrew. 2024. SudokuWiki. www.sudokuwiki.org/Main_Page.Google Scholar
Thibault, Pierre, and Menzel, Andreas. 2013. Reconstructing state mixtures from diffraction measurements. Nature, 494(7435), 68–71.CrossRefGoogle ScholarPubMed
Turán, Paul. 1961. Research problems. Közl MTA Mat. Kutató Int, 6(417–423), 2.Google Scholar
Turán, Paul. 1977. A note of welcome. Journal of Graph Theory, 1(1), 7–9.CrossRefGoogle Scholar
Van der Maaten, Laurens, and Hinton, Geoffrey. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2579–2605.Google Scholar
Vavasis, Stephen A. 2010. On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization, 20(3), 1364–1377.CrossRefGoogle Scholar
Vonnegut, Kurt. 1963. Cat’s Cradle. Holt, Rinehart and Winston.Google Scholar
Weakley, W. D. 1995. Domination in the Queen’s Graph in Graph theory, combinatorics, and algorithms: proceedings of the seventh quadrennial international conference on the theory and applications of graphs. Vol. 2. Wiley.Google Scholar
Zauner, Gerhard. 1999. Quantum designs: Foundations of a non-commutative theory of designs. PhD thesis, University of Vienna.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Veit Elser, Cornell University, New York
  • Book: Solving Problems with Projections
  • Online publication: 05 June 2025
  • Chapter DOI: https://doi.org/10.1017/9781009475518.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Veit Elser, Cornell University, New York
  • Book: Solving Problems with Projections
  • Online publication: 05 June 2025
  • Chapter DOI: https://doi.org/10.1017/9781009475518.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Veit Elser, Cornell University, New York
  • Book: Solving Problems with Projections
  • Online publication: 05 June 2025
  • Chapter DOI: https://doi.org/10.1017/9781009475518.012
Available formats
×