Published online by Cambridge University Press: 05 June 2012
The concept of “special function” is one that has no precise definition. From a practical point of view, a special function is a function of one variable that is (a) not one of the “elementary functions” – algebraic functions, trigonometric functions, the exponential, the logarithm, and functions constructed algebraically from these functions – and is (b) a function about which one can find information in many of the books about special functions. A large amount of such information has been accumulated over a period of three centuries. Like such elementary functions as the exponential and trigonometric functions, special functions arise in numerous contexts. These contexts include both pure mathematics and applications, ranging from number theory and combinatorics to probability and physical science.
The majority of the special functions that are treated in many of the general books on the subject are solutions of certain second-order linear differential equations. Indeed, these functions were discovered through the study of physical problems: vibrations, heat flow, equilibrium, and so on. The associated equations are partial differential equations of second order. In some coordinate systems, these equations can be solved by separation of variables, leading to the second-order ordinary differential equations in question. (Solutions of the analogous first-order linear differential equations are elementary functions.)
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.