Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-2c8nx Total loading time: 0 Render date: 2025-06-18T22:37:48.110Z Has data issue: false hasContentIssue false

5 - “Fluctuation” of Intracellular Dynamics

Published online by Cambridge University Press:  05 June 2025

Hiroaki Takagi
Affiliation:
Nara Medical University
Chikara Furusawa
Affiliation:
The University of Tokyo
Satoshi Sawai
Affiliation:
The University of Tokyo
Kunihiko Kaneko
Affiliation:
Copenhagen University
Get access

Summary

This chapter quantitatively examines molecule numbers and reaction rates within a cell, along with thermal fluctuations and Brownian motion, from a mesoscopic perspective. Thermal fluctuations of molecules are pivotal in chemical reactions, protein folding, molecular motor systems, and so on. We introduce estimations of cell size and molecule numbers within cells, highlighting the possible significance of the minority of molecules. Describing their behaviors necessitates dealing with stochastic fluctuations, and the Gillespie algorithm, widely employed in Monte Carlo simulations for stochastic chemical reactions, is described. We elaborate on extrinsic and intrinsic noise in cells, and on why understanding how cells process fluctuations for sensing is crucial. To facilitate this comprehension, we revisit the fundamentals of statistics, including the law of large numbers and the central limit theorem. We derive the diffusion equation from random walk and confirm the dimensionality dependence of random walks, and elucidate Brownian motion as the continuous limit of random walk and explain the Einstein relation. As examples of the physiological significance of fluctuations in cell biology, we estimate the diffusion constant of proteins inside cells, diffusion-limited reactions, and introduce bacterial random walks and chemotaxis, and amoeboid movements of eukaryotic cells.

Type
Chapter
Information
Theoretical Biology of the Cell
A Dynamical-Systems Perspective
, pp. 135 - 175
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×