Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-gcwzt Total loading time: 0 Render date: 2025-06-18T19:20:19.331Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 June 2025

Brent R. Bielefeldt
Affiliation:
Texas A & M University
Darren J. Hartl
Affiliation:
Texas A & M University
Marcelo H. Kobayashi
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Topology Optimization via L-Systems and Genetic Algorithms
Bioinspired Encoding for Generative Design
, pp. 281 - 292
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Aage, N., Andreassen, E., Lazarov, B. S. & Sigmund, O. (2017), ‘Giga-voxel computational morphogenesis for structural design’, Nature 550(7674), 8486.CrossRefGoogle ScholarPubMed
Abelson, H. & diSessa, A. (1986), Turtle Geometry: The Computer as a Medium for Exploring Mathematics, The MIT Press, Cambridge, MA.Google Scholar
Achtziger, W. (2007), ‘On simultaneous optimization of truss geometry and topology’, Structural and Multidisciplinary Optimization 33, 285304.CrossRefGoogle Scholar
Allaire, G. (2002), Shape Optimization By the Homogenization Method, Springer, New York.CrossRefGoogle Scholar
Allaire, G., Dapogny, C. & Frey, P. (2011), ‘Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh’, Comptes Rendus Mathematique 349(17–18), 9991003.CrossRefGoogle Scholar
Allaire, G., Jouve, F. & Toader, A.-M. (2004), ‘Structural optimization using sensitivity analysis and a level-set method’, Journal of Computational Physics 194, 363393.CrossRefGoogle Scholar
Allaire, G. & Pantz, O. (2006), ‘Structural optimization with FreeFem++’, Structural and Multidisciplinary Optimization 32, 173181.CrossRefGoogle Scholar
Amstutz, S. & Andrä, H. (2006), ‘A new algorithm for topology optimization using a level-set method’, Journal of Computational Physics 216(2), 573588.CrossRefGoogle Scholar
Antonio, F. (1992), ‘Faster line segment intersection’, in Kirk, D., ed., Graphics Gems III (IBM Version), Elsevier, Cambridge, MA, pp. 199202.CrossRefGoogle Scholar
Axler, S. (2015), Linear Algebra Done Right, 3rd ed., Springer, New York.CrossRefGoogle Scholar
Azid, A., Kwan, A. S. K. & Seetharamu, K. N. (2002), ‘A GA-based technique for layout optimization of truss with stress and displacement constraints’, International Journal for Numerical Methods in Engineering 53(7), 16411674.CrossRefGoogle Scholar
Balamurugan, R., Ramakrishnan, C. V. & Singh, N. (2008), ‘Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization’, Applied Soft Computing 8(4), 16071624.CrossRefGoogle Scholar
Barzilai, J. & Borwein, J. M. (1988), ‘Two point step size gradient methods’, IMA Journal of Numerical Analysis 8, 141148.CrossRefGoogle Scholar
Bathe, K.-J. (1996), Finite Element Procedures, Prentice-Hall, Watertown, MA.Google Scholar
Ben-Tal, A. & Bendsøe, M. P. (1993), ‘A new method for optimal truss topology design’, SIAM Journal on Optimization 3(2), 322358.CrossRefGoogle Scholar
Bendsøe, M. P. (1989), ‘Optimal shape design as a material distribution problem’, Structural and Multidisciplinary Optimization 1, 193202.CrossRefGoogle Scholar
Bendsøe, M. P., Ben-Tal, A. & Zowe, J. (1994), ‘Optimization methods for truss geometry and topology design’, Structural Optimization 7(3), 141159.CrossRefGoogle Scholar
Bendsøe, M. P., Lund, E., Olhoff, N. & Sigmund, O. (2005), ‘Topology optimization - Broadening the areas of application’, Control and Cybernetics 34(1), 735.Google Scholar
Bendsøe, M. P. & Sigmund, O. (2003), Topology Optimization: Theory, Methods and Applications, 2nd ed., Springer, New York.Google Scholar
Berdichevsky, V. L. (2009), Variational Principles of Continuum Mechanics. Part II: Applications, Springer, New York.Google Scholar
Berg, M., Cheong, O., Kreveld, M., & Overmars, M. (1997), ‘Computational geometry’, in Computational Geometry, Springer, Berlin, pp. 117.CrossRefGoogle Scholar
Besada, J. L. (2019), ‘Math and music, models and metaphors: Alberto Posadas ‘tree-like structures’, Contemporary Music Review 38(1–2), 107131.CrossRefGoogle Scholar
Bielefeldt, B. R. (2020), ‘Multiobjective topology optimization for preliminary design using graph theory and L-system languages’, PhD thesis, Texas A&M University.Google Scholar
Bielefeldt, B. R., Akleman, E., Reich, G. W., Beran, P. S. & Hartl, D. J. (2019), ‘L-system-generated mechanism topology optimization using graph-based interpretation’, Journal of Mechanisms and Robotics 11(2).CrossRefGoogle Scholar
Bielefeldt, B. R., Reich, G. W., Beran, P. S. & Hartl, D. J. (2019), ‘Development and validation of a genetic L-system programming framework for topology optimization of multifunctional structures’, Computers & Structures 218, 152169.CrossRefGoogle Scholar
Bondy, J. A. & Murty, U. S. R. (1976), Graph Theory with Applications, vol. 290, Macmillan, London.CrossRefGoogle Scholar
Bourdin, B. (2001), ‘Filters in topology optimization’, International Journal for Numerical Methods in Engineering 50, 21432158.CrossRefGoogle Scholar
Bourdin, B. & Chambolle, A. (2003), ‘Design-dependent loads in topology optimization’, ESAIM: Control, Optimisation and Calculus of Variations 9, 1948.Google Scholar
Bruns, T. E. (2007), ‘Topology optimization of convection-dominated, steady-state heat transfer problems’, International Journal of Heat and Mass Transfer 50(15–16), 28592873.CrossRefGoogle Scholar
Cappello, F. & Mancuso, A. (2003), ‘A genetic algorithm for combined topology and shape optimizations’, Computer Aided Design 35(8), 761769.CrossRefGoogle Scholar
Cauchy, A. (1847), ‘Méthode générale pour la résolution des systèmes d’équations simultanées’, Comptes Rendus de l’Académie des Sciences Paris 25, 536538.Google Scholar
Chandrupatla, T. & Belegundu, A. (2021), Introduction to Finite Elements in Engineering, 5th ed., Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Chapman, C. D., Saitou, K. & Jakiela, M. J. (1994), ‘Genetic algorithms as an approach to configuration and topology design’, Journal of Mechanical Design 116(4), 10051012.CrossRefGoogle Scholar
Chen, T.-Y. & Wu, S.-C. (1998), ‘Multiobjective optimal topology design of structures’, Computational Mechanics 21(6), 483492.CrossRefGoogle Scholar
Choi, K. K. & Kim, N.-H. (2006), Structural Sensitivity Analysis and Optimization 1: Linear Systems, Springer Science & Business Media, New York.Google Scholar
Chomsky, N. (1959), ‘On certain formal properties of grammars’, Information and Control 2(2), 137167.CrossRefGoogle Scholar
Chu, D., Xie, Y., Hira, A. & Steven, G. (1996), ‘Evolutionary structural optimization for problems with stiffness constraint’, Finite Elements in Analysis and Design 21(4), 239251.CrossRefGoogle Scholar
Chu, D., Xie, Y. & Steven, G. (1998), ‘An evolutionary structural optimization method for sizing problems with discrete design variables’, Computers and Structures 68, 419431.Google Scholar
Clark, V. (2019), ‘On an evolutionary developmental methodology for pin-joint framework optimization’, A thesis submitted to the Graduate Division of the University of Hawai’i at Mānoa in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering, May 2019.Google Scholar
Clausen, A., Schevenels, M., Lazarov, B. S. & Sigmund, O. (2011), ‘Efficient topology optimization in MATLAB using 88 lines of code’, Structural and Multidisciplinary Optimization 43, 116.Google Scholar
Coello, C. A. C. (2002), Evolutionary Optimization, Kluwer, Secaucus.Google Scholar
Coffin, P. & Maute, K. (2016), ‘Level set topology optimization of cooling and heating devices using a simplified convection model’, Structural and Multidisciplinary Optimization 53(5), 9851003.CrossRefGoogle Scholar
Cohon, J. L. (2003), Multiobjective Programming and Planning, Dover Publications, Mineola, NY.Google Scholar
COM (2008), COMSOL Multiphysics 3.5 User’s Manual.Google Scholar
Combes, S. & Daniel, T. (2003), ‘Flexural stiffness in insect wings I. Scaling and the influence of wing venation’, Journal of Experimental Biology 206(17), 29792987.CrossRefGoogle ScholarPubMed
Cook, R. D., Malkus, D. S. & Plesha, M. E. (1989), Concepts and Applications of Finite Element Analysis, 3rd ed., Wiley, New York.Google Scholar
Das, I. & Dennis, J. E. (1997), ‘A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems’, Structural Optimization 14(1), 6369.CrossRefGoogle Scholar
Dassault Systèmes of America Corp. (2014), ‘Tosca structure user’s guide’.Google Scholar
de Ruiter, M. & van Keulen, F. (2004), ‘Topology optimization using a topology description function’, Structural and Multidisciplinary Optimization 26(6), 406416.CrossRefGoogle Scholar
Deaton, J. D. & Grandhi, R. V. (2014), ‘A survey of structural and multidisciplinary continuum topology optimization: Post 2000’, Structural and Multidisciplinary Optimization 49(1), 138.CrossRefGoogle Scholar
Deb, K. (1999), ‘An introduction to genetic algorithms’, Sadhana 24(4–5), 293315.CrossRefGoogle Scholar
Deb, K. (2001), Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Chichester.Google Scholar
Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T. (2000), ‘A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II’, in International Conference on Parallel Problem Solving from Nature, Springer, Berlin, pp. 849858.Google Scholar
Deng, S. & Suresh, K. (2016), ‘Multi-constrained 3D topology optimization via augmented topological level-set’, Computers & Structures 170, 112.CrossRefGoogle Scholar
Diaz, A. & Lipton, R. (1997), ‘Optimal material layout for 3D elastic structures’, Structural Optimization 13(1), 6064.CrossRefGoogle Scholar
Diestel, R. (2010), ‘Graph theory – Heidelberg’, Graduate Texts in Mathematics 173(451), 5.Google Scholar
Dirker, J. & Meyer, J. P. (2013), ‘Topology optimization for an internal heat-conduction cooling scheme in a square domain for high heat flux applications’, Journal of Heat Transfer 135(11).CrossRefGoogle Scholar
Dunning, P. D., Stanford, B. K. & Kim, H. A. (2015), ‘Coupled aerostructural topology optimization using a level set method for 3D aircraft wings’, Structural and Multidisciplinary Optimization 51(5), 11131132.CrossRefGoogle Scholar
Ern, A. & Guermond, J.-L. (2004), Theory and Practice of Finite Elements, Springer Verlag, Berlin.CrossRefGoogle Scholar
Eschenauer, H. A. & Olhoff, N. (2001), ‘Topology optimization of continuum structures: A review’, Applied Mechanics Reviews 54(4), 331390.CrossRefGoogle Scholar
Fanjoy, D. W. & Crossley, W. A. (2002), ‘Topology design of planar cross-sections with a genetic algorithm: Part 1 – Overcoming the obstacles’, Engineering Optimization 34(1), 3348.Google Scholar
Fantini, P. (2007), ‘Effective multiobjective MDO for conceptual design – An aircraft design perspective’, PhD thesis, Cranfield University.Google Scholar
Fletcher, R. (1987), Practical Methods of Optimization, John Wiley & Sons, West Sussex.Google Scholar
Fletcher, R., Qi, L., Teo, K. & Yang, X. (2005), Optimization and Control with Applications, Springer Science and Business Media, New York.Google Scholar
Gain, A. L. & Paulino, G. H. (2013), ‘A critical comparative assessment of differential equation-driven methods for structural topology optimization’, Structural and Multidisciplinary Optimization 48, 685710.CrossRefGoogle Scholar
Gibbons, A. (1985), Algorithmic Graph Theory, Cambridge University Press, Cambridge.Google Scholar
Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.Google Scholar
Gomes, A. A. & Suleman, A. (2006), ‘Application of spectral level set methodology in topology optimization’, Structural and Multidisciplinary Optimization 31(6), 430443.CrossRefGoogle Scholar
Gould, S. J. (2002), The Structure of Evolutionary Theory, Harvard University Press, Cambridge, MA.Google Scholar
Guan, C. L. & Chun, Y. L. (2009), ‘Structural topology optimization using ant colony optimization algorithm’, Applied Soft Computing 9(4), 13431353.Google Scholar
Guest, J. K. (2009), ‘Imposing maximum length scale in topology optimization’, Structural and Multidisciplinary Optimization 37(5), 463473.CrossRefGoogle Scholar
Guest, J. K., Asadpoure, A. & Ha, S.-H. (2011), ‘Eliminating beta-continuation from Heaviside projection and density filter algorithms’, Structural and Multidisciplinary Optimization 44(4), 443453.CrossRefGoogle Scholar
Guest, J. K., Prévost, J. H. & Belytschko, T. (2004), ‘Achieving minimum length scale in topology optimization using nodal design variables and projection functions’, International Journal for Numerical Methods in Engineering 61(2), 238254.CrossRefGoogle Scholar
Guirguis, D., Hamza, K., Aly, M., Hegazi, H. & Saitou, K. (2015), ‘Multi-objective topology optimization of multi-component continuum structures via a Kriging-interpolated level set approach’, Structural and Multidisciplinary Optimization 51(3), 733748.CrossRefGoogle Scholar
Ha, S.-H. & Cho, S. (2008), ‘Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh’, Computers & Structures 86(13–14), 14471455.CrossRefGoogle Scholar
Hagishita, T. & Ohsaki, M. (2009), ‘Topology optimization of trusses by growing ground structure method’, Structural and Multidisciplinary Optimization 37(4), 377393.CrossRefGoogle Scholar
Hamda, H., Jouve, F., Lutton, E., Schoenauer, M. & Sebag, M. (2002), ‘Compact unstructured representations for evolutionary design’, Applied Intelligence 16(2), 139155.CrossRefGoogle Scholar
Hanan, J. S. (1992), ‘Parametric L systems and their application to the modeling and visualization of plants’, PhD thesis, University of Regina.Google Scholar
Hare, W., Nutini, J. & Tesfamariam, S. (2013), ‘A survey of non-gradient optimization methods in structural engineering’, Advances in Engineering Software 59, 1928.CrossRefGoogle Scholar
Hartl, D. J., Bielefeldt, B., Reich, G. W. & Beran, P. S. (2017), ‘Multi-fidelity analysis and experimental characterization of muscular-skeletal structures optimized via genetic programming’, in 25th AIAA/AHS Adaptive Structures Conference, p. 1442.Google Scholar
Hemp, W. S. (1973), Optimum Structures, Clarendon Press, Oxford.Google Scholar
Hingston, P. F., Barone, L. C. & Michalewicz, Z. (2008), Design by Evolution: Advances in Evolutionary Design, Springer Science & Business Media, New York.CrossRefGoogle Scholar
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y.-C. & Ho, C.-M. (2003), ‘Unsteady aerodynamics and flow control for flapping wing flyers’, Progress in Aerospace Sciences 39(8), 635681.CrossRefGoogle Scholar
Howell, L. L. (2001), Compliant Mechanisms, John Wiley & Sons, New York.Google Scholar
Hu, H., Kumar, A. G., Abate, G. & Albertani, R. (2010), ‘An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight’, Aerospace Science and Technology 14(8), 575586.CrossRefGoogle Scholar
Hughes, J. F., van Dam, A., Mcguire, M., Sklar, D. F., Foley, J. D., Feiner, S. K. & Akeley, K. (2014), Computer Graphics, 3rd ed., Addison-Wesley, Upper Saddle River, NJ.Google Scholar
Huttenlocher, D. P., Klanderman, G. A. & Rucklidge, W. J. (1993), ‘Comparing images using the hausdorff distance’, IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850863.CrossRefGoogle Scholar
Jakiela, M. J., Chapman, C., Duda, J., Adewuya, A. & Saitou, K. (2000), ‘Continuum structural topology design with genetic algorithms’, Computer Methods in Applied Mechanics and Engineering 186(2–4), 339356.CrossRefGoogle Scholar
Jantos, D. R., Hackl, K. & Junker, P. (2019), ‘An accurate and fast regularization approach to thermodynamic topology optimization’, International Journal for Numerical Methods in Engineering 117, 9911017.CrossRefGoogle Scholar
Johnson, E. & Neill, D. (1988), Automated structural optimization system (ASTROS). Volume 3. Applications manual’, Technical report, Northrop Corp., Hawthorne, CA. Aircraft Div.Google Scholar
Junker, P. & Hackl, K. (2015), ‘A variational growth approach to topology optimization’, Structural and Multidisciplinary Optimization 52, 293304.CrossRefGoogle Scholar
Kaldate, A., Thurston, D., Emamipour, H. & Rood, M. (2006), ‘Engineering parameter selection for design optimization during preliminary design’, Journal of Engineering Design 17(4), 291310.CrossRefGoogle Scholar
Kane, C. & Schoenauer, M. (1996), ‘Topological optimum design using genetic algorithms’, Control and Cybernetics 25(5), 10591087.Google Scholar
Katoch, S., Chauhan, S. S. & Kumar, V. (2021), ‘A review on genetic algorithm: Past, present, and future’, Multimedia Tools and Applications 80, 80918126.CrossRefGoogle ScholarPubMed
Kawamoto, A., Matsumori, T., Yamasaki, S., Nomura, T., Kondoh, T. & Nishiwaki, S. (2011), ‘Heaviside projection based topology optimization by a PDE-filtered scalar function’, Structural and Multidisciplinary Optimization 44(1), 1924.CrossRefGoogle Scholar
Khetan, A., Lohan, D. J. & Allison, J. T. (2015), ‘Managing variable-dimension structural optimization problems using generative algorithms’, Structural and Multidisciplinary Optimization 52, 695715.CrossRefGoogle Scholar
Kobayashi, M. H. (2010), ‘On a biologically inspired topology optimization method’, Communications in Nonlinear Science and Numerical Simulation 15(3), 787802.CrossRefGoogle Scholar
Kobayashi, M. H., Canfield, R. A. & Kolonay, R. M. (2021), ‘On a cellular developmental method for layout optimization via multi-fidelity analyses and the two-point topological derivative’, Structural and Multidisciplinary Optimization 64, 23432360.CrossRefGoogle Scholar
Kobayashi, M. H., Pedro, H. T. C., Coimbra, C. & da Silva, A. (2009), ‘The formal evolutionary development of low entropy dendritic thermal systems’, Journal of Thermophysics and Heat Transfer 23(4), 822827.CrossRefGoogle Scholar
Kobayashi, M. H., Pedro, H. T. C., Kolonay, R. M. & Reich, G. W. (2009), ‘On a cellular division method for aircraft structural design’, The Aeronautical Journal 113, 821831.Google Scholar
Kolonay, R. M. & Kobayashi, M. H. (2010), ‘Topology, shape, and sizing optimization of aircraft lifting surfaces using a cellular division method’, in 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, p. 9079.Google Scholar
Kolonay, R. M. & Kobayashi, M. H. (2015), ‘Optimization of aircraft lifting surfaces using a cellular division method’, Journal of Aircraft 52(6), 20512063.CrossRefGoogle Scholar
Kraft, D. (1994), ‘Algorithm 733: Tomp – Fortran modules for optimal control calculations’, ACM Transactions on Mathematical Software 20, 262281.CrossRefGoogle Scholar
Kreissl, S., Pingen, G. & Maute, K. (2011), ‘An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method’, International Journal for Numerical Methods in Fluids 65(5), 496519.CrossRefGoogle Scholar
Kreyszig, E. (1978), Introductory Functional Analysis with Applications, John Wiley and Sons, New York.Google Scholar
Kuphaldt, T. R. (1988), Lessons in Electric Circuits, Volume II – Alternating Current, Open Book Project.Google Scholar
Langdon, W. B. & Poli, R. (2013), Foundations of Genetic Programming, Springer Science & Business Media, New York.Google Scholar
Laurain, A. (2018), ‘A level set-based structural optimization code using FEniCS’, Structural and Multidisciplinary Optimization 58, 13111334.CrossRefGoogle Scholar
Lazarov, B. S. & Sigmund, O. (2011), ‘Filters in topology optimization based on Helmholtz-type differential equations’, International Journal for Numerical Methods in Engineering 86(6), 765781.CrossRefGoogle Scholar
Lazarov, B. S. & Wang, F. (2017), ‘Maximum length scale in density based topology optimization’, Computer Methods in Applied Mechanics and Engineering 318, 826844.CrossRefGoogle Scholar
Lee, J., Mueller, C. & Fivet, C. (2016), ‘Automatic generation of diverse equilibrium structures through shape grammars and graphic statics’, International Journal of Space Structures 31(2–4), 147164.CrossRefGoogle Scholar
Lewiński, T., Sokól, T. & Graczykowski, C. (2019), Michell Structures, Springer Nature, Gewerbestrasse.CrossRefGoogle Scholar
Li, T., Sun, X., Lu, Z. & Wu, Y. (2016), ‘A novel multiobjective optimization method based on sensitivity analysis’, Mathematical Problems in Engineering 2016, 112.Google Scholar
Li, Z., Zuo, L., Kuang, J. & Luhrs, G. (2012), ‘Energy-harvesting shock absorber with a mechanical motion rectifier’, Smart Materials and Structures 22(2), 025008.CrossRefGoogle Scholar
Liang, Q., Xie, Y. & Steven, G. (2000), ‘Optimal topology selection of continuum structures with displacement constraints’, Computers & Structures 77(6), 635644.CrossRefGoogle Scholar
Liefvendahl, M. & Stocki, R. (2006), ‘A study on algorithms for optimization of Latin hypercubes’, Journal of Statistical Planning and Inference 136(9), 32313247.CrossRefGoogle Scholar
Lin, J., Luo, Z. & Tong, L. (2010), ‘A new multi-objective programming scheme for topology optimization of compliant mechanisms’, Structural and Multidisciplinary Optimization 40(1–6), 241255.CrossRefGoogle Scholar
Lindenmayer, A. (1968 a), ‘Mathematical models for cellular interactions in development I. Filaments with one-sided inputs’, Journal of Theoretical Biology 18, 280299.CrossRefGoogle ScholarPubMed
Lindenmayer, A. (1968 b), ‘Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs’, Journal of Theoretical Biology 18, 300315.CrossRefGoogle ScholarPubMed
Lindenmayer, A. (1974), ‘Adding continuous components to L-systems’, in Rozenberg, G. & Salomaa, A., eds., L Systems, Springer, New York, pp. 5368.CrossRefGoogle Scholar
Liu, J. & Ma, Y.-S. (2015), ‘3D level-set topology optimization: A machining feature-based approach’, Structural and Multidisciplinary Optimization 52(3), 563582.CrossRefGoogle Scholar
Liu, K. & Tovar, A. (2014), ‘An efficient 3D topology optimization code written in Matlab’, Structural and Multidisciplinary Optimization 50(6), 11751196.CrossRefGoogle Scholar
Liu, X., Yi, W.-J., Li, Q. & Shen, P.-S. (2008), ‘Genetic evolutionary structural optimization’, Journal of Constructional Steel Research 64(3), 305311.CrossRefGoogle Scholar
Loyola, R. A., Querin, O. M., Jiménez, A. G. & Gordoa, C. A. (2018), ‘A sequential element rejection and admission (SERA) topology optimization code written in Matlab’, Structural and Multidisciplinary Optimization 58, 12971310.CrossRefGoogle Scholar
Luo, Z., Tong, L., Wang, M. Y. & Wang, S. (2007), ‘Shape and topology optimization of compliant mechanisms using a parameterization level set method’, Journal of Computational Physics 227(1), 680705.CrossRefGoogle Scholar
Luo, Z., Wang, M. Y., Wang, S. & Wei, P. (2008), ‘A level set-based parameterization method for structural shape and topology optimization’, International Journal for Numerical Methods in Engineering 76(1), 126.CrossRefGoogle Scholar
Mack, C. A. (2011), ‘Fifty years of Moore’s law’, IEEE Transactions on Semiconductor Manufacturing 24(2), 202207.CrossRefGoogle Scholar
Madeira, J. F. A., Pina, H. & Rodrigues, H. C. (2010), ‘GA topology optimization using random keys for tree encoding of structures’, Structural and Multidisciplinary Optimization 40(1–6), 227240.CrossRefGoogle Scholar
Madeira, J. F. A., Rodrigues, H. C. & Pina, H. (2005), ‘Multi-objective optimization of structures topology by genetic algorithms’, Advances in Engineering Software 36(1), 2128.CrossRefGoogle Scholar
Mazaheri, K. & Ebrahimi, A. (2010), ‘Experimental study on interaction of aerodynamics with flexible wings of flapping vehicles in hovering and cruise flight’, Archive of Applied Mechanics 80(11), 12551269.CrossRefGoogle Scholar
McDonald, N. (1983), Trees and Networks in Biological Models, John Wiley and Sons, Chichester.Google Scholar
Messac, A. & Ismail-Yahaya, A. (2001), ‘Required relationship between objective function and Pareto frontier orders: Practical implications’, AIAA Journal 39(11), 21682174.CrossRefGoogle Scholar
Messac, A., Sundararaj, G. J., Tappeta, R. V. & Renaud, J. E. (2000), ‘Ability of objective functions to generate points on nonconvex Pareto frontiers’, AIAA Journal 38(6), 10841091.CrossRefGoogle Scholar
Michell, A. G. M. (1904 a), ‘The limits of economy of material in frame-structures’, Philosophical Magazine 47(8), 589597.Google Scholar
Michell, A. G. M. (1904 b), ‘LVIII. The limits of economy of material in frame-structures’, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 8(47), 589597.CrossRefGoogle Scholar
Miettinen, K. (2012), Nonlinear Multiobjective Optimization, Springer Science & Business Media, New York.Google Scholar
Muller, D. E. & Preparata, F. P. (1978), ‘Finding the intersection of two convex polyhedra’, Theoretical Computer Science 7(2), 217236.CrossRefGoogle Scholar
Nagel, L. W. (1975), ‘Spice2: A computer program to simulate semiconductor circuits’, PhD dissertation, University of California at Berkeley.Google Scholar
Nakamura, A., Lindenmayer, A. & Aizawa, K. (1986), ‘Some systems for map generation’, in The Book of L, Springer, Berlin, pp. 323332.CrossRefGoogle Scholar
Nocedal, J. & Wright, S. (2006), Numerical Optimization, Springer Science & Business Media, New York.Google Scholar
Norato, J. A., Bell, B. K. & Tortorelli, D. A. (2015), ‘A geometry projection method for continuum-based topology optimization with discrete elements’, Computer Methods in Applied Mechanics and Engineering 293, 306327.CrossRefGoogle Scholar
Nunes, M. A. (2010), ‘A biologically inspired method for spacecraft design’, MS thesis, University of Hawaii at Manoa.Google Scholar
Oliver, J., Yago, D., Cante, J. & Lloberas-Valls, O. (2019), ‘Variational approach to relaxed topological optimization: Closed form solutions for structural problems in a sequential pseudo-time framework’, Computer Methods in Applied Mechanics and Engineering 355, 779819.CrossRefGoogle Scholar
Oren-Suissa, M. & Podbilewicz, B. (2007), ‘Cell fusion during development’, Trends in Cell Biology 17(11), 537546.CrossRefGoogle ScholarPubMed
Osher, S. & Fedkiw, R. (2003), Level Set Methods and Dynamic Implicit Surfaces, Springer, New York.CrossRefGoogle Scholar
Osher, S. & Sethian, J. (1998), ‘Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations’, Journal of Computational Physics 79(1), 1249.CrossRefGoogle Scholar
Otomori, M., Yamada, T., Izui, K. & Nishiwaki, S. (2015), ‘Matlab code for a level set-based topology optimization method using a reaction diffusion equation’, Structural and Multidisciplinary Optimization 51(5), 11591172.CrossRefGoogle Scholar
Papalambros, P. Y. & Wilde, D. J. (2017), Principles of Optimal Design, 3rd ed., Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Patil, M. J. & Hodges, D. H. (2006), ‘Flight dynamics of highly flexible flying wings’, Journal of Aircraft 43(6), 17901799.CrossRefGoogle Scholar
Pedro, H. T. C., Kobayashi, M. H., Coimbra, C. & da Silva, A. (2008), ‘On the effectiveness of complex design through an evolutionary approach’, Journal of Thermophysics and Heat Transfer 22(1), 115118.CrossRefGoogle Scholar
Pedro, H. T. C. & Kobayashi, M. H. (2011), ‘On a cellular division method for topology optimization’, International Journal for Numerical Methods in Engineering 88(11), 11751197.CrossRefGoogle Scholar
Peters, D. A., Hsieh, M.-C. & Torrero, A. (2007), ‘A state-space airloads theory for flexible airfoils’, Journal of the American Helicopter Society 52(4), 329342.CrossRefGoogle Scholar
Peters, D. A., Karunamoorthy, S. & Cao, W.-M. (1995), ‘Finite state induced flow models. I – Two-dimensional thin airfoil’, Journal of Aircraft 32(2), 313322.CrossRefGoogle Scholar
Prasad, J. & Diaz, A. R. (2005), ‘Synthesis of bistable periodic structures using topology optimization and a genetic algorithm’, Journal of Mechanical Design 128(6), 12981306.CrossRefGoogle Scholar
Prusinkiewicz, P. (1986), ‘Graphical applications of L systems’, in Proceedings of Graphics Interface ‘86 – Vision Interface ‘86, pp. 247253.Google Scholar
Prusinkiewicz, P. (1987), ‘Applications of L systems to computer imagery’, in Graph Grammars and Their Applications to Computer Science, Lecture Notes in Computer Sciences, Springer-Verlag, New York, pp. 534548.CrossRefGoogle Scholar
Prusinkiewicz, P. & Hanan, J. (1990), ‘Visualization of botanical structures and processes using parametric L-systems’, in Thalmann, D., ed., Scientific Visualization and Graphics Simulation, John Wiley & Sons, New York, pp. 183201.Google Scholar
Prusinkiewicz, P. & Lindenmayer, A. (2004), The Algorithmic Beauty of Plants, Springer, New York.Google Scholar
Querin, O. M., Victoria, M., Alonso, C., Loyola, R. A. & Montrull, P. M. (2017), Topology Design Methods for Structural Optimization, Academic Press, London.Google Scholar
Querin, O. M., Young, V., Steven, G. P. & Xie, Y. M. (2000), ‘Computational efficiency and validation of bi-directional evolutionary structural optimization’, Computer Methods in Applied Mechanics and Engineering 189(2), 559573.CrossRefGoogle Scholar
Querin, O., Steven, G. & Xie, Y. (1998), ‘Evolutionary structural optimisation (ESO) using a bidirectional algorithm’, Engineering Computations 15(8), 10311048.CrossRefGoogle Scholar
Reddy, J. N. (2019), Introduction to the Finite Element Method, McGraw-Hill Education, New York.Google Scholar
Roth-Nebelsick, A., Uhl, D., Mosbrugger, V. & Kerp, H. (2001), ‘Evolution and function of leaf venation architecture: A review’, Annals of Botany 87, 553566.CrossRefGoogle Scholar
Rozenberg, G. & Salomaa, A. (1997), Handbook of Formal Languages, Springer Verlag, Berlin.Google Scholar
Rozvany, G. I. N. (1994), Topology Optimization in Structural Mechanics, Springer Verlag, Berlin.Google Scholar
Rozvany, G. I. N. (2001), ‘Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics’, Structural and Multidisciplinary Optimization 21(2), 90108.CrossRefGoogle Scholar
Rozvany, G. I. N. (2009), ‘A critical review of established methods of structural topology optimization’, Structural and Multidisciplinary Optimization 37(3), 217237.CrossRefGoogle Scholar
Rozvany, G. I. N., Bendsøe, M. P. & Kirsch, U. (1995), ‘Layout optimization of structures’, Applied Mechanics Reviews 48(2), 41119.CrossRefGoogle Scholar
Schittkowski, K. (1983), ‘On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function’, Mathematische Operationsforschung und Statistik. Series Optimization 14, 197216.CrossRefGoogle Scholar
Schmit, L. A. (1960), ‘Structural design by systematic synthesis’, in Proceedings of the Second ASCE Conference on Electronic Computation, New York, pp. 105122.Google Scholar
Schoenauer, M. (1996), ‘Shape representations and evolutionary schemes’, in Proceedings of the Fifth Annual Conference on Evolutionary Programming, San Diego, CA.Google Scholar
Schramm, U. & Zhou, M. (2006), ‘Recent developments in the commercial implementation of topology optimization’, IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials 137, 239247.CrossRefGoogle Scholar
Schutze, O., Esquivel, X., Lara, A. & Coello, C. A. C. (2012), ‘Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization’, IEEE Transactions on Evolutionary Computation 16(4), 504522.CrossRefGoogle Scholar
Sethian, J. A. & Wiegmann, A. (2000), ‘Structural boundary design via level set and immersed interface methods’, Journal of Computational Physics 163(2), 489528.CrossRefGoogle Scholar
Sharma, D., Deb, K. & Kishore, N. N. (2008), ‘Towards generating diverse topologies of path tracing compliant mechanisms using a local search based multi-objective genetic algorithm procedure’, in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), IEEE, pp. 20042011.CrossRefGoogle Scholar
Shin, H., Todoroki, A. & Hirano, Y. (2013), ‘Elite-initial population for efficient topology optimization using multi-objective genetic algorithms’, International Journal of Aeronautical and Space Sciences 14(4), 324333.CrossRefGoogle Scholar
Sigmund, O. (1997), ‘On the design of compliant mechanisms using topology optimization’, Mechanics of Structures and Machines 25(4), 493524.CrossRefGoogle Scholar
Sigmund, O. (2007), ‘Morphology-based black and white filters for topology optimization’, Structural and Multidisciplinary Optimization 33(4–5), 401424.CrossRefGoogle Scholar
Sigmund, O. (2011), ‘On the usefulness of non-gradient approaches in topology optimization’, Structural and Multidisciplinary Optimization 43(5), 589596.CrossRefGoogle Scholar
Sigmund, O. & Petersson, J. (1998), ‘Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima’, Structural Optimization 16, 6875.CrossRefGoogle Scholar
Singh, B. & Chopra, I. (2008), ‘Insect-based hover-capable flapping wings for micro air vehicles: Experiments and analysis’, AIAA Journal 46(9), 21152135.CrossRefGoogle Scholar
Smith, H. & Norato, J. A. (2020), ‘A MATLAB code for topology optimization using the geometry projection method’, Structural and Multidisciplinary Optimization 62, 15791594.CrossRefGoogle Scholar
Sokolnikoff, I. S. (1951), Tensor Analysis: Theory and Applications, Wiley, New York.Google Scholar
Stanford, B., Beran, P. & Kobayashi, M. (2012), ‘Aeroelastic optimization of flapping wing venation: A cellular division approach’, AIAA Journal 50(4), 938951.CrossRefGoogle Scholar
Szilard, A. L. & Quinton, R. E. (1979), ‘An introduction for DOL systems by computer graphics’, The Science Terrapin 4, 813.Google Scholar
Tai, K. & Akhtar, S. (2005), ‘Structural topology optimization using a genetic algorithm with a morphological geometric representation scheme’, Structural and Multidisciplinary Optimization 30(2), 113.CrossRefGoogle Scholar
Tai, K. & Chee, T. H. (2000), ‘Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology’, Journal of Mechanical Design 122(4), 560566.CrossRefGoogle Scholar
Tai, K., Cui, G. Y. & Ray, T. (2002), ‘Design synthesis of path generating compliant mechanisms by evolutionary optimization of topology and shape’, Journal of Mechanical Design 124(3), 492500.CrossRefGoogle Scholar
Tai, K. & Prasad, J. (2007), ‘Target-matching test problem for multiobjective topology optimization using genetic algorithms’, Structural and Multidisciplinary Optimization 34(4), 333345.CrossRefGoogle Scholar
Tamaki, H., Kita, H. & Kobayashi, S. (1996), ‘Multi-objective optimization by genetic algorithms: A review’, in Proceedings of IEEE International Conference on Evolutionary Computation, pp. 517522.CrossRefGoogle Scholar
Tcherniak, D. & Sigmund, O. (2001), ‘A web-based topology optimization program’, Structural and Multidisciplinary Optimization 22(3), 179187.CrossRefGoogle Scholar
Timoshenko, S. P. & Gere, J. M. (2009), Theory of Elastic Stability, McGraw-Hill, New York.Google Scholar
Turevsky, I. & Suresh, K. (2011), ‘Efficient generation of Pareto-optimal topologies for compliance optimization’, International Journal for Numerical Methods in Engineering 87(12), 12071228.CrossRefGoogle Scholar
van Dijk, N. P., Langelaar, M. & van Keulen, F. (2012), ‘Explicit level-set-based topology optimization using an exact Heaviside function and consistent sensitivity analysis’, International Journal for Numerical Methods in Engineering 91(1), 6797.CrossRefGoogle Scholar
van Dijk, N. P., Maute, K., Langelaar, M. & van Keulen, F. (2013), ‘Level-set methods for structural topology optimization: A review’, Structural and Multidisciplinary Optimization 48, 437472.CrossRefGoogle Scholar
Vanderplaats, G. N. & Moses, F. (1973), ‘Structural optimization by methods of feasible directions’, Computers & Structures 3(4), 739755.CrossRefGoogle Scholar
Venturini, G. (2015), ‘Ahkab 0.18 documentation’, http://ahkab.readthedocs.io.Google Scholar
Vichnevetsky, R. & Bowles, J. B. (1982), Fourier Analysis of Numerical Approximations of Hyperbolic Equations, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA.CrossRefGoogle Scholar
Wallin, M., Ristinmaa, M. & Askfelt, H. (2012), ‘Optimal topologies derived from a phase-field method’, Structural and Multidisciplinary Optimization 45, 171183.CrossRefGoogle Scholar
Wang, C., Zhao, Z., Zhou, M., Sigmund, O. & Zhang, X. S. (2021), ‘A comprehensive review of educational articles on structural and multidisciplinary optimization’, Structural and Multidisciplinary Optimization 64, 28272880.CrossRefGoogle Scholar
Wang, F., Lazarov, B. S. & Sigmund, O. (2011), ‘On projection methods, convergence and robust formulations in topology optimization’, Structural and Multidisciplinary Optimization 43(6), 767784.CrossRefGoogle Scholar
Wang, M. Y., Wang, X. & Guo, D. (2003), ‘A level set method for structural topology optimization’, Computer Methods in Applied Mechanics and Engineering 192(1–2), 227246.CrossRefGoogle Scholar
Wang, M. Y. & Zhou, S. (2004), ‘Phase field: A variational method for structural topology optimization’, Computer Modeling in Engineering and Sciences 6, 547566.Google Scholar
Wang, N. & Tai, K. (2008), ‘Design of grip-and-move manipulators using symmetric path generating compliant mechanisms’, Journal of Mechanical Design 130(11), 103622.CrossRefGoogle Scholar
Wang, S. & Wang, M. Y. (2006), ‘Radial basis functions and level set method for structural topology optimization’, International Journal for Numerical Methods in Engineering 65(12), 20602090.CrossRefGoogle Scholar
Wang, S. Y. & Tai, K. (2004), ‘Graph representation for structural topology optimization using genetic algorithms’, Computers and Structures 82(20–21), 16091622.CrossRefGoogle Scholar
Wang, S. Y. & Tai, K. (2005 a), ‘Bar-system representation for topology optimization using genetic algorithms’, Engineering Computations 22(1–2), 206231.CrossRefGoogle Scholar
Wang, S. Y. & Tai, K. (2005 b), ‘Structural topology design optimization using genetic algorithms with a bit-array representation’, Computer Methods in Applied Mechanics and Engineering 194(36–38), 37493770.CrossRefGoogle Scholar
Wang, S. Y., Tai, K. & Wang, M. Y. (2006), ‘An enhanced genetic algorithm for structural topology optimization’, International Journal for Numerical Methods in Engineering 65(1), 1844.CrossRefGoogle Scholar
Ward, R. M., Bielefeldt, B. R. & Hartl, D. J. (2020), ‘Design of tailorable stiffness structures using L-system topology optimization’, in Behavior and Mechanics of Multifunctional Materials IX, vol. 11377, International Society for Optics and Photonics, p. 113770R.Google Scholar
Wasserman, R. H. (2009), Tensors and Manifolds: With Applications to Physics, 2nd ed., Oxford University Press, Oxford.Google Scholar
Wu, J., Sigmund, O. & Groen, J. P. (2021), ‘Topology optimization of multi-scale structures: A review’, Structural and Multidisciplinary Optimization 63, 14551480.CrossRefGoogle Scholar
Wu, P., Stanford, B., Sällström, E., Ukeiley, L. & Ifju, P. (2011), ‘Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings’, Bioinspiration & Biomimetics 6(1), 016009.CrossRefGoogle ScholarPubMed
Xie, Y. M. & Steven, G. P. (1997 a), ‘Basic evolutionary structural optimization’, in ‘Evolutionary Structural Optimization’, Springer, London, pp. 1229.CrossRefGoogle Scholar
Xie, Y. M. & Steven, G. P. (1997 b), Evolutionary Structural Optimization, Springer, New York.CrossRefGoogle Scholar
Xie, Y. M. & Steven, G. P. (1993), ‘A simple evolutionary procedure for structural optimization’, Computers and Structures 49(5), 885896.CrossRefGoogle Scholar
Xing, X., Wei, P. & Wang, M. Y. (2010), ‘A finite element-based level set method for structural optimization’, International Journal for Numerical Methods in Engineering 82(7), 805842.CrossRefGoogle Scholar
Yago, D., Cante, J., Lloberas-Valls, O. & Oliver, J. (2021), ‘Topology optimization using the unsmooth variational topology optimization (UNVARTOP) method: An educational implementation in Matlab’, Structural and Multidisciplinary Optimization 63, 955981.CrossRefGoogle Scholar
Yoshimura, M., Shimoyama, K., Misaka, T. & Obayashi, S. (2016), ‘Topology optimization using a Kriging-assisted genetic algorithm with a novel level set representation approach’, in 7th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2016, National Technical University of Athens, pp. 33613376.CrossRefGoogle Scholar
Zavala, V. M. & Flores-Tlacuahuac, A. (2012), ‘Stability of multiobjective predictive control: A utopia-tracking approach’, Automatica 48(10), 26272632.CrossRefGoogle Scholar
Zhou, M. & Rozvany, G. (2001), ‘On the validity of ESO type methods in topology optimization’, Structural and Multidisciplinary Optimization 21, 8083.CrossRefGoogle Scholar
Zhu, B., Zhang, X. & Fatikow, S. (2014), ‘A multi-objective method of hinge-free compliant mechanism optimization’, Structural and Multidisciplinary Optimization 49(3), 431440.CrossRefGoogle Scholar
Zhu, B., Zhang, X. & Fatikow, S. (2015), ‘Filter the shape sensitivity in level set-based topology optimization methods’, Structural and Multidisciplinary Optimization 51(5), 10351049.CrossRefGoogle Scholar
Zuo, Z. H. & Xie, Y. M. (2015), ‘A simple and compact python code for complex 3D topology optimization’, Advances in Engineering Software 85, 111.CrossRefGoogle Scholar
Zuo, Z. H., Xie, Y. M. & Huang, X. (2009), ‘Combining genetic algorithms with BESO for topology optimization’, Structural and Multidisciplinary Optimization 38(5), 511523.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×