No CrossRef data available.
Published online by Cambridge University Press: 01 September 2025
Let  $f $ be a normalized Hecke eigenform of even weight
$f $ be a normalized Hecke eigenform of even weight  $k \geq 2$ for
$k \geq 2$ for  $SL_2(\mathbb {Z})$. In this article, we establish an asymptotic formula for the shifted convolution sum of a general divisor function, where the sum involves the Fourier coefficients of a multi-folded L-function weighted with a kernel function.
$SL_2(\mathbb {Z})$. In this article, we establish an asymptotic formula for the shifted convolution sum of a general divisor function, where the sum involves the Fourier coefficients of a multi-folded L-function weighted with a kernel function.
 $L$
-functions at
$L$
-functions at 
 $s=1$
. Int. Math. Res. Not. (2004), no. 31, 1561–1617.10.1155/S1073792804132455CrossRefGoogle Scholar
$s=1$
. Int. Math. Res. Not. (2004), no. 31, 1561–1617.10.1155/S1073792804132455CrossRefGoogle Scholar $L$
-functions
. Am. J. Math. 115(1993), no. 1, 161–240.CrossRefGoogle Scholar
$L$
-functions
. Am. J. Math. 115(1993), no. 1, 161–240.CrossRefGoogle Scholar $L$
-functions.
 Invent. Math. 47(1978), no. 2, 149–170.CrossRefGoogle Scholar
$L$
-functions.
 Invent. Math. 47(1978), no. 2, 149–170.CrossRefGoogle Scholar $L$
-functions
. Math. Pannon (N. S.). 30(2024), no. 1, 41–60.10.1556/314.2024.00003CrossRefGoogle Scholar
$L$
-functions
. Math. Pannon (N. S.). 30(2024), no. 1, 41–60.10.1556/314.2024.00003CrossRefGoogle Scholar $l$
-fold product
$l$
-fold product 
 $L$
-functions and its applications
. Ramanujan J. 66(2025), no. 2, Article no. 31, 20 p.10.1007/s11139-024-01003-4CrossRefGoogle Scholar
$L$
-functions and its applications
. Ramanujan J. 66(2025), no. 2, Article no. 31, 20 p.10.1007/s11139-024-01003-4CrossRefGoogle Scholar $\mathrm{GL}_4$
 and the symmetric fourth of
$\mathrm{GL}_4$
 and the symmetric fourth of 
 $\mathrm{GL}_2$
. J. Am. Math. Soc. 16(2003), no. 1, 139–183 With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.CrossRefGoogle Scholar
$\mathrm{GL}_2$
. J. Am. Math. Soc. 16(2003), no. 1, 139–183 With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.CrossRefGoogle Scholar $\mathrm{GL}_2 \times \mathrm{GL}_3$
 and the symmetric cube for
$\mathrm{GL}_2 \times \mathrm{GL}_3$
 and the symmetric cube for 
 $\mathrm{GL}_2$
. Ann. Math. (2) 155(2002), no. 3, 837–893. With an appendix by Colin J. Bushnell and Guy Henniart.10.2307/3062134CrossRefGoogle Scholar
$\mathrm{GL}_2$
. Ann. Math. (2) 155(2002), no. 3, 837–893. With an appendix by Colin J. Bushnell and Guy Henniart.10.2307/3062134CrossRefGoogle Scholar $GL(3)$
$GL(3)$
 
 $L$
-functions
. Int. Math. Res. Not. (2023), no. 13, 11453–11470.10.1093/imrn/rnac153CrossRefGoogle Scholar
$L$
-functions
. Int. Math. Res. Not. (2023), no. 13, 11453–11470.10.1093/imrn/rnac153CrossRefGoogle Scholar $L$
-functions
. Rocky Mountain J. Math. 47(2017), no. 2, 553–570.10.1216/RMJ-2017-47-2-553CrossRefGoogle Scholar
$L$
-functions
. Rocky Mountain J. Math. 47(2017), no. 2, 553–570.10.1216/RMJ-2017-47-2-553CrossRefGoogle Scholar $L$
-functions. In: M. Jutila and T. Metsänkylä. (eds.), Number theory (Turku, 1999), de Gruyter, Berlin, 2001, pp. 201–221.CrossRefGoogle Scholar
$L$
-functions. In: M. Jutila and T. Metsänkylä. (eds.), Number theory (Turku, 1999), de Gruyter, Berlin, 2001, pp. 201–221.CrossRefGoogle Scholar $L$
-functions
. Annali di Matematica (4) 130(1982), 287–306.10.1007/BF01761499CrossRefGoogle Scholar
$L$
-functions
. Annali di Matematica (4) 130(1982), 287–306.10.1007/BF01761499CrossRefGoogle Scholar $\tau (n)$
 and similar arithmetical functions. I. The zeros of the function
$\tau (n)$
 and similar arithmetical functions. I. The zeros of the function 
 $\sum_{n=1}^{\infty}\tau (n)/{n}^s$
 on the line
$\sum_{n=1}^{\infty}\tau (n)/{n}^s$
 on the line 
 $\mathit{\operatorname{Re}}(s)=13/2$
. II. The order of the Fourier coefficients of integral modular forms
. Proc. Camb. Philos. Soc. 35(1939), 351–372.10.1017/S0305004100021095CrossRefGoogle Scholar
$\mathit{\operatorname{Re}}(s)=13/2$
. II. The order of the Fourier coefficients of integral modular forms
. Proc. Camb. Philos. Soc. 35(1939), 351–372.10.1017/S0305004100021095CrossRefGoogle Scholar $L$
-functions for GL(2)
. Compos. Math. 70(1989), no. 3, 245–273.Google Scholar
$L$
-functions for GL(2)
. Compos. Math. 70(1989), no. 3, 245–273.Google Scholar $L$
-functions
. Funct. Approx. Comment. Math. 68(2023), no. 2, 195–206.10.7169/facm/2046CrossRefGoogle Scholar
$L$
-functions
. Funct. Approx. Comment. Math. 68(2023), no. 2, 195–206.10.7169/facm/2046CrossRefGoogle Scholar $L$
-functions
. Eur. J. Math. 9(2023), no. 1, Article no. 17, 24 pp.10.1007/s40879-023-00612-5CrossRefGoogle Scholar
$L$
-functions
. Eur. J. Math. 9(2023), no. 1, Article no. 17, 24 pp.10.1007/s40879-023-00612-5CrossRefGoogle Scholar $L$
-functions and Heegner points on shrinking sets
. J. Eur. Math. Soc. 19(2017), no. 5, 1545–1576.10.4171/jems/699CrossRefGoogle Scholar
$L$
-functions and Heegner points on shrinking sets
. J. Eur. Math. Soc. 19(2017), no. 5, 1545–1576.10.4171/jems/699CrossRefGoogle Scholar