Hostname: page-component-784d4fb959-mvngg Total loading time: 0 Render date: 2025-07-17T11:21:09.719Z Has data issue: false hasContentIssue false

Effect of lime on the cementitious properties of two soils rich in swelling clays: montmorillonite-rich bentonite and stevensite-rich bentonite

Published online by Cambridge University Press:  01 July 2025

Achraf Harrou*
Affiliation:
Laboratory of Applied Chemistry and Environment, Team of Mineral Solid Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco Geology and Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University (UM6P), Hay Moulay Rachid, Ben Guerir, Morocco
Dounia Azerkane
Affiliation:
Laboratory of Applied Chemistry and Environment, Team of Mineral Solid Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
Meriam El Ouahabi
Affiliation:
Université de Liège, Liège, Belgium
Hicham Nasri
Affiliation:
Laboratory of Applied Chemistry and Environment, Team of Mineral Solid Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
Nathalie Fagel
Affiliation:
Université de Liège, Liège, Belgium
ElKhadir Gharibi
Affiliation:
Laboratory of Applied Chemistry and Environment, Team of Mineral Solid Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
*
Corresponding author: Achraf Harrou; Email: harrou201@gmail.com

Abstract

Swelling soils, particularly those rich in smectite, present significant challenges to civil engineering due to their shrinking–swelling behaviour. Lime stabilization is a commonly used practice to address this, but the reactivity of smectite minerals in an alkaline limestone environment differs widely. This study investigates the reactivity of two Moroccan smectite-rich clays – montmorillonite-dominated bentonite and stevensite/saponite-rich bentonite – when treated with aerial lime. Through mineralogical, microstructural and mechanical analyses, this study highlights the distinct behaviour of montmorillonite, which reacts with lime to form calcium silicate hydrate gels, compared to the inert response of stevensite/saponite. Despite its low pozzolanic activity, stevensite-bentonite demonstrates greater mechanical strength, reaching 2.5 MPa in the S3 mixture (90% stevensite-bentonite and 10% lime). This strength is attributed to the formation of calcite through the de-dolomitization of dolomite. The findings reveal different stabilization mechanisms between dioctahedral and trioctahedral smectites, offering new insights for soil stabilization strategies involving these smectite types.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aalaoul, M., Azdimousa, A. & El Hammouti, K. (2015) Bentonite’s reserves geometry of Trebia deposit in Nador region (north eastern Morocco); contributions of geophysical surveys and core drilling campaign. Journal of Materials and Environmental Science, 6, 35643573.Google Scholar
Acevedo, N.I., Rocha, M.C. & Bertolino, L.C. (2017) Mineralogical characterization of natural clays from Brazilian southeast region for industrial applications. Cerâmica, 63, 253262.Google Scholar
Ahmad, H.M., Kamal, M.S. & Al-Harthi, M.A. (2018) Effect of thermal aging and electrolyte on bentonite dispersions: rheology and morphological properties. Journal of Molecular Liquids, 269, 278286.Google Scholar
Ait Hmeid, H., Akodad, M., Baghour, M., Moumen, A., Skalli, A., Azizi, G. et al. (2021) Valorization of Moroccan bentonite deposits: ‘purification and treatment of margin by the adsorption process’. Molecules, 26, 5528.Google Scholar
Ajbary, M., Santos, A., Morales-Flórez, V. & Esquivias, L. (2013) Removal of basic yellow cationic dye by an aqueous dispersion of Moroccan stevensite/saponite. Applied Clay Science, 80, 4651.Google Scholar
Al-Mukhtar, M., Khattab, S. & Alcover, J.F. (2012) Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, 139, 1727.Google Scholar
ASTM (2023) ASTM D1621. Standard Test Method for Compressive Properties of Rigid Cellular Plastics. ASTM, West Conshohocken, PA, USA, 5 pp.Google Scholar
Bejjaoui, R., Benhammou, A., Nibou, L., Tanouti, B., Bonnet, J.P., Yaacoubi, A. & Ammar, A. (2010) Synthesis and characterization of cordierite ceramic from Moroccan stevensite/saponite and andalusite. Applied Clay Science, 49, 336340.Google Scholar
Benhammou, A., Tanouti, B., Nibou, L., Yaacoubi, A. & Bonnet, J.P. (2009) Mineralogical and physicochemical investigation of Mg-smectite from Jbel Ghassoul, Morocco. Clays and Clay Minerals, 57, 264270.Google Scholar
Benhammou, A., Yaacoubi, A., Nibou, L. & Tanouti, B. (2005) Adsorption of metal ions onto Moroccan stevensite/saponite: kinetic and isotherm studies. Journal of Colloid and Interface Science, 282, 320326.Google Scholar
Bouna, L., Rhouta, B., Amjoud, M., Jada, A., Maury, F., Daoudi, L. & Senocq, F. (2010) Correlation between eletrokinetic mobility and ionic dyes adsorption of Moroccan stevensite/saponite. Applied Clay Science, 48, 527530.Google Scholar
Brindley, G.W. & Kikkawa, S. (1979) A crystal-chemical study of Mg, Al and Ni, N hydroxy-perchlorates and hydroxycarbonates. American Mineralogist, 64, 836843.Google Scholar
Burne, R.V., Moore, L.S., Christy, A.G., Troitzsch, U., King, P.L., Carnerup, A.M. & Hamilton, P.J. (2014) Stevensite/saponite in the modern thrombolites of Lake Clifton, Western Australia: a missing link in microbialite mineralization? Geology, 42, 575578.Google Scholar
Cho, W.J., Lee, J.O. & Kang, C.H. (2002) A compilation and evaluation of thermal and mechanical properties of bentonite-based buffer materials for a high-level waste repository. Nuclear Engineering and Technology, 34, 90103.Google Scholar
Christidis, G.E. & Dunham, A.C. (1997) Compositional variations in smectites. Part II: Alteration of acidic precursors, a case study from Milos Island, Greece. Clay Minerals, 32, 253270.Google Scholar
Christidis, G.E. & Mitsis, I. (2006) A new Ni-rich stevensite/saponite from the ophiolite complex of Othrys, central Greece. Clays and Clay Minerals, 54, 653666.Google Scholar
Christidis, G.E. & Huff, W.D. (2009) Geological aspects and genesis of bentonites. Elements, 5, 9398.Google Scholar
Christidis, G.E., Athanasakis, N. & Marinakis, D. (2024) Rheological properties of magnesium bentonite and sepiolite suspensions after dynamic ageing at high temperatures. Clay Minerals, 59, 113126.Google Scholar
Dafalla, M.A. & Shamrani, M.A. (2011) Road damage due to expansive soils: survey of the phenomenon and measures for improvement. Pp. 7380 in: Design, Construction, Rehabilitation, and Maintenance of Bridges (Moyo, P., Ooi, P., Zhai, E. & Myers, J., editors). American Society of Civil Engineers, Reston, VA, USA.Google Scholar
Daou, I., Zegaoui, O., Chfaira, R., Ahlafi, H. & Moussout, H. (2015) Physico-chemical characterization and kinetic study of Methylene Blue adsorption onto a Moroccan bentonite. International Journal of Scientific and Research Publications, 5, 293301.Google Scholar
de Carvalho Costa, T.C., Melo, J.D.D. & Paskocimas, C.A. (2013) Thermal and chemical treatments of montmorillonite clay. Ceramics International, 39, 50635067.Google Scholar
Decarreau, A. (1983) Etude expérimentale de la cristallogenèse des smectites. Mesures des coefficients de partage smectite trioctaédrique-solution aqueuse pour les métaux M2+ de la première série de transition. Persée-Portail des revues scientifiques en SHS, Paris, France, 185 pp.Google Scholar
Dietel, J., Gröger-Trampe, J., Bertmer, M., Kaufhold, S., Ufer, K. & Dohrmann, R. (2019) Crystal structure model development for soil clay minerals – I. Hydroxy-interlayered smectite (HIS) synthesized from bentonite. A multi-analytical study. Geoderma, 347, 135149.Google Scholar
Duringer, P., Ais, M. & Chahi, A. (1995) Contexte geodynamique et milieu de depot du gisement de stevensite/saponite (rhassoul) miocene du Maroc; environnement lacustre ou evaporitique? Bulletin de la Société géologique de France, 166, 169179.Google Scholar
El Idrissi, A.C. (2016) Géopolymérisation et activation alcaline des coulis d’injection: structuration, micromécanique et résistance aux sollicitations physico-chimiques. Doctoral dissertation. École centrale de Nantes, Nantes, France, 181 pp.Google Scholar
Emmerich, K (2011) Thermal analysis in the characterization and processing of industrial minerals. EMU Notes in Mineralogy, 9, 129170.Google Scholar
Engbrecht, D.C. & Hirschfeld, D. A. (2016) Thermal analysis of calcium sulfate dihydrate sources used to manufacture gypsum wallboard. Thermochimica Acta, 639, 173185.Google Scholar
Fares, H., Remond, S., Noumowé, A. & Cousture, A. (2011) Microstructure et propriétés physico-chimiques de bétons autoplaçants chauffés de 20 à 600 C. European Journal of Environmental and Civil Engineering, 15, 869888.Google Scholar
Fondjo, A.A., Theron, E. & Ray, R.P. (2021) Stabilization of expansive soils using mechanical and chemical methods: a comprehensive review. Civil Engineering Archit, 9, 12951308.Google Scholar
Gastaldi, D., Canonico, F. & Boccaleri, E. (2009) Ettringite and calcium sulfoaluminate cement: investigation of water content by near-infrared spectroscopy. Journal of Materials Science, 44, 57885794.Google Scholar
Gonçalves, T., Silva, R.V., De Brito, J., Fernández, J.M. & Esquinas, A.R. (2020) Mechanical and durability performance of mortars with fine recycled concrete aggregates and reactive magnesium oxide as partial cement replacement. Cement and Concrete Composites, 105, 103420.Google Scholar
Gunasekaran, S. & Anbalagan, G. (2007) Thermal decomposition of natural dolomite. Bulletin of Materials Science, 30, 339344.Google Scholar
Guo, Y. & Yu, X. (2017). Characterizing the surface charge of clay minerals with atomic force microscope (AFM). AIMS Materials Science, 4, 582593.Google Scholar
Harrou, A., Gharibi, E., Nasri, H. & El Ouahabi, M. (2020) Thermodynamics and kinetics of the removal of Methylene Blue from aqueous solution by raw kaolin. SN Applied Sciences, 2, 277.Google Scholar
Hassan, M.S. & Abdel-Khalek, N.A. (1998) Beneficiation and applications of an Egyptian bentonite. Applied Clay Science, 13, 99115.Google Scholar
Hay, R.L. & Guldman, S.G. (1987) Diagenetic alteration of silicic ash in Searles Lake, California. Clays and Clay Minerals, 35, 449457.Google Scholar
Imai, N., Otsuka, R., Nakamura, T. & Tsunashima, A. (1970) Stevensite/saponite from the Akatani mine, Niigata Prefecture, northeastern Japan. Clay Science, 4, 1129.Google Scholar
Kaufhold, S., Dohrmann, R., Klinkenberg, M., Siegesmund, S. & Ufer, K. (2010) N2-BET specific surface area of bentonites. Journal of Colloid and Interface Science, 349, 275282.Google Scholar
Krupskaya, V., Novikova, L., Tyupina, E., Belousov, P., Dorzhieva, O., Zakusin, S. et al. (2019) The influence of acid modification on the structure of montmorillonites and surface properties of bentonites. Applied Clay Science, 172, 110.Google Scholar
Kumar, S., Dutta, R.K. & Mohanty, B. (2014) Engineering properties of bentonite stabilized with lime and phosphogypsum. Slovak Journal of Civil Engineering, 22, 3544.Google Scholar
Lanas, J., Bernal, J.P., Bello, M.A. & Alvarez, J.I. (2006) Mechanical properties of masonry repair dolomitic lime-based mortars. Cement and Concrete Research, 36, 951960.Google Scholar
Le Rouzic, M. (2014) Étude des propriétés physico-chimiques et mécaniques des matériaux cimentaires à base d’oxyde de magnesium. Doctoral dissertation. Université Paris-Est, Paris, France, 292 pp.Google Scholar
Leroy, P. & Revil, A. (2004) A triple-layer model of the surface electrochemical properties of clay minerals. Journal of Colloid and Interface Science, 270, 371380.Google Scholar
Modabberi, S., Namayandeh, A., Setti, M. & López-Galindo, A. (2019) Genesis of the eastern Iranian bentonite deposits. Applied Clay Science, 168, 5667.Google Scholar
Monnin, Y. (2005) Méthodologie pour décrire le gonflement multi-échelle de calcaires siliceux soumis à la réaction alcali-silice dans le matériau béton. Doctoral dissertation. Université d’Artois, Arras, France, 179 pp.Google Scholar
Moraes, J.D.D., Bertolino, S.R.A., Cuffini, S.L., Ducart, D.F., Bretzke, P.E. & Leonardi, G.R. (2017) Clay minerals: properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes – a review. International Journal of Pharmaceutics, 534, 213219.Google Scholar
Murray, H.H. (2006). Geology and location of major industrial clay deposits. Developments in Clay Science, 2, 3365.Google Scholar
Negawo, W.J., Di Emidio, G., Bezuijen, A., Verastegui Flores, R.D. & François, B. (2019) Lime-stabilisation of high plasticity swelling clay from Ethiopia. European Journal of Environmental and Civil Engineering, 23, 504514.Google Scholar
Ouakkass, M.B., Ouadif, L., Bahi, L. & Akhssas, A. (2019) Predictive risk mapping related to the shrink–swell of clays under the railway track in the Settat plateau (Morocco). ARPN Journal of Engineering and Applied Sciences, 14, 23382347.Google Scholar
Oumnih, S., Bekkouch, N., Gharibi, E.K., Fagel, N., Elhamouti, K. & El Ouahabi, M. (2019) Phosphogypsum waste as additives to lime stabilization of bentonite. Sustainable Environment Research, 29, 110.Google Scholar
Palou, M., Kuzielová, E., Žemlička, M., Novotný, R. & Másilko, J. (2018) The effect of metakaolin upon the formation of ettringite in metakaolin–lime–gypsum ternary systems. Journal of Thermal Analysis and Calorimetry, 133, 7786.Google Scholar
Ponce-Antón, G., Ortega, L.A., Zuluaga, M.C., Alonso-Olazabal, A. & Solaun, J.L. (2018) Hydrotalcite and hydrocalumite in mortar binders from the medieval castle of Portilla (Álava, north Spain): accurate mineralogical control to achieve more reliable chronological ages. Minerals, 8, 326.Google Scholar
Pozo, M. & Calvo, J. P. (2018). An overview of authigenic magnesian clays. Minerals, 8, 520.Google Scholar
Qiao, Z., Liu, Q., Zhang, S. & Wu, Y. (2019) The mineralogical characteristics between opaline silica in bentonite and α-cristobalite. Solid State Sciences, 96, 105948.Google Scholar
Rhouta, B., Kaddami, H., Elbarqy, J., Amjoud, M., Daoudi, L., Maury, F. & Gerard, J.F. (2008). Elucidating the crystal-chemistry of Jbel Rhassoul stevensite/saponite (Morocco) by advanced analytical techniques. Clay Minerals, 43, 393403.Google Scholar
Santaren, J. (2015) Properties and applications of magnesian clays. Pp. 331380 in: Magnesian Clays: Characterization, Origin and Applications (Pozo, M. & Galan, E., editors). AIPEA Educational Series, Publication No. 2. Digilabs, Bari, Italy,Google Scholar
Sha, W.E.A.Z., O’Neill, E.A. & Guo, Z. (1999) Differential scanning calorimetry study of ordinary Portland cement. Cement and Concrete Research, 29, 14871489.Google Scholar
Shepard, F.P. (1954) Nomenclature based on sand–silt–clay ratios. Journal of Sedimentary Research, 24, 151158.Google Scholar
Shimoda, S. (1971) Mineralogical studies of a species of stevensite/saponite from the Obori mine, Yamagata Prefecture, Japan. Clay Minerals, 9, 185192.Google Scholar
Solanki, P. & Zaman, M. (2012) Microstructural and mineralogical characterization of clay stabilized using calcium-based stabilizers. Chapter 38 in: Scanning Electron Microscopy (Kazmiruk, V., editor). IntechOpen, London, UK.Google Scholar
Sondi, I., Bišćan, J. & Pravdić, V. (1996) Electrokinetics of pure clay minerals revisited. Journal of Colloid and Interface Science, 178, 514522.Google Scholar
Stevens, R.E. (1945) A system for calculating analyses of micas and related minerals to end members. US Geological Survey Bulletin, 950, 101119.Google Scholar
Štukovnik, P., Bosiljkov, V.B. & Marinšek, M. (2020) Alkali-dolomite reaction in air lime mortar – implications for increased strength and water resistance. Journal of Cultural Heritage, 45, 160168.Google Scholar
Sumner, M.E. (editor) (1999) Handbook of Soil Science. CRC Press, Boca Raton, FL, USA, 1436 pp.Google Scholar
Taylor, H.F.W., Famy, C. & Scrivener, K.L. (2001) Delayed ettringite formation. Cement and Concrete Research, 31, 683693.Google Scholar
Tokarský, J. (2018) Ghassoul–Moroccan clay with excellent adsorption properties. Materials Today: Proceedings, 5, S78S87.Google Scholar
Tosca, N.J. & Masterson, A.L. (2014) Chemical controls on incipient Mg-silicate crystallization at 25°C: implications for early and late diagenesis. Clay Minerals, 49, 165194.Google Scholar
Trauth, N. (1977) Argiles évaporitiques dans la sédimentation carbonatée continentale et épicontinentale Tertiaire. Bassins de Paris, de Mormoiron et de Salinelles (France), Jbel Ghassoul (Maroc). Persée-Portail des revues scientifiques en SHS, Paris, France, 212 pp.Google Scholar
Vitale, E., Deneele, D., Paris, M. & Russo, G. (2017) Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays. Applied Clay Science, 141, 3645.Google Scholar
Wang, Q., Yan, P. & Han, S. (2011) The influence of steel slag on the hydration of cement during the hydration process of complex binder. Science China Technological Sciences, 54, 388394.Google Scholar
Yu, J., Lei, M., Cheng, B. & Zhao, X. (2004) Facile preparation of calcium carbonate particles with unusual morphologies by precipitation reaction. Journal of Crystal Growth, 261, 566570.Google Scholar
Zarzuela, S.R., Luna, A.M.J., Martínez, C.L.A., Yeste, S.M.D.P., Garcia-Lodeiro, I., Blanco-Varela, M.T. et al. (2020) Producing CSH gel by reaction between silica oligomers and portlandite: a promising approach to repair cementitious materials. Cement and Concrete Research, 130, 106008.Google Scholar
Zviagina, B.B., McCarty, D.K., Środoń, J. & Drits, V.A. (2004) Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 52, 399410.Google Scholar