Hostname: page-component-5b777bbd6c-gcwzt Total loading time: 0 Render date: 2025-06-18T22:15:20.572Z Has data issue: false hasContentIssue false

The impact of Amazon deforestation is magnified by changing the configuration of forest cover

Published online by Cambridge University Press:  23 May 2025

Luan Gabriel Araujo Goebel*
Affiliation:
Center for Research on Limnology, Biodiversity, and Ethnoecology, Laboratory of Mastozoology, Graduate Program of Environmental Science, University of Mato Grosso State (UNEMAT), Cáceres, Mato Grosso, Brazil
Maurício Humberto Vancine
Affiliation:
Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade, Laboratório de Ecologia Espacial e Conservação, Rio Claro, São Paulo, Brazil
Juliano A Bogoni
Affiliation:
Center for Research on Limnology, Biodiversity, and Ethnoecology, Laboratory of Mastozoology, Graduate Program of Environmental Science, University of Mato Grosso State (UNEMAT), Cáceres, Mato Grosso, Brazil
Gabriela Rodrigues Longo
Affiliation:
Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Mato Grosso do Sul, Brasil
Mathilde Anne Laurance Calicis
Affiliation:
Université de Liège, Gembloux Agro-Bio Tech, Terra Teaching and Research Centre, Forest is Life, Tropical Forestry, Gembloux, Belgium
Philip M Fearnside
Affiliation:
Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
Ana Filipa Palmeirim
Affiliation:
Laboratório de Ecologia e Zoologia de Vertebrados, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
Manoel dos Santos-Filho
Affiliation:
Center for Research on Limnology, Biodiversity, and Ethnoecology, Laboratory of Mastozoology, Graduate Program of Environmental Science, University of Mato Grosso State (UNEMAT), Cáceres, Mato Grosso, Brazil
*
Corresponding author: Luan Gabriel Araujo Goebel; Email: lg.araujogoebel@gmail.com

Summary

The Amazon comprises the most biodiverse region in the world, but, despite being highly threatened by human-induced environmental changes, little is known about how those changes influence the remaining forest’s extent and configuration in Brazil’s arc of deforestation. We analysed the spatial and temporal dynamics and the configuration of forest cover in Brazil’s state of Rondônia over 34 years. We calculated seven landscape metrics based on freely available satellite imagery to understand the habitat transformations. Overall, natural vegetation cover declined from 90.9% to 62.7% between 1986 and 2020, and fragmentation greatly increased, generating 78 000 forest fragments and 100 000 fragments of ‘natural vegetation’, which also includes forest. We found that c. 50% of the vegetation is within c. 1 km of the nearest forest edge, and the mean isolation between fragments is c. 2.5 km. Most natural vegetation and forest vegetation layers outside protected areas (PAs; Brazil’s ‘conservation units’) and Indigenous territories (ITs) are >10 km from the nearest PA or IT. This reduction of natural vegetation in Rondônia is posing major threats to the survival of species and is undermining the dynamics of ecosystems. Measures to control deforestation and avoid the reduction of large remnants are urgently needed.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amaral, S, Metzger, JP, Rosa, M, Adorno, BV, Gonçalves, GC, Pinto, LFG (2025) Alarming patterns of mature forest loss in the Brazilian Atlantic Forest. Nature Sustainability (epub ahead of print). DOI: 10.1038/s41893-025-01508-w.CrossRefGoogle Scholar
Antongiovanni, M, Venticinque, EM, Fonseca, CR (2018) Fragmentation patterns of the Caatinga drylands. Landscape Ecology 33: 13531367.CrossRefGoogle Scholar
Awade, M, Metzger, JP (2008) Using gap-crossing capacity to evaluate functional connectivity of two Atlantic rainforest birds and their response to fragmentation. Austral Ecology 33: 863871.CrossRefGoogle Scholar
Barber, CP, Cochrane, MA, Souza, CM Jr, Laurance, WF (2014) Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biological Conservation 177: 203209.CrossRefGoogle Scholar
Benchimol, M, Peres, CA (2015) Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam. Biological Conservation 187: 6172.CrossRefGoogle Scholar
Bernarde, PS, Albuquerque, SD, Barros, TO, Turci, LCB (2012) Serpentes do estado de Rondônia, Brasil. Biota Neotropica 12: 154182.CrossRefGoogle Scholar
Bivand, R (2022) rgrass: Interface Between ‘GRASS’ Geographical Information System and ‘R’. R package version 0.3-6 [www document]. URL https://rdrr.io/rforge/rgrass7/man/rgrass.html CrossRefGoogle Scholar
Bogoni, JA, Peres, CA, Ferraz, KMPMB (2020) Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. Scientific Reports 10: 116.CrossRefGoogle ScholarPubMed
Bogoni, JA, Peres, CA, Ferraz, KMPMB (2022) Medium-to-large-bodied mammal surveys across the Neotropics are heavily biased against the most faunally intact assemblages. Mammal Review 52: 221235.CrossRefGoogle Scholar
Borges, GA, Mancilla, G, Siqueira, AB, Vancine, MH, Ribeiro, MC, de Souza Maia, JC (2022) The fate of vegetation remnants in the southern Amazon’s largest threatened hotspot: part (I) a 33-year analysis of LULCC in the Tapajos River basin, Brazil. Research, Society and Development 11: e448111032553.CrossRefGoogle Scholar
Borges, SH, da Silva, JM (2012) A new area of endemism for Amazonian birds in the Rio Negro Basin. The Wilson Journal of Ornithology 124: 1523.CrossRefGoogle Scholar
Butt, N, de Oliveira, PA, Costa, MH (2011) Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. Journal of Geophysical Research 116: D11120.CrossRefGoogle Scholar
Cabral, AI, Saito, C, Pereira, H, Laques, AE (2018) Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Applied Geography 100: 101115.CrossRefGoogle Scholar
Chaves, ME, Mataveli, G, Conceição, KV, Adami, M, Petrone, FG, Sanches, ID (2024) AMACRO: the newer Amazonia deforestation hotspot and a potential setback for Brazilian agriculture. Perspectives in Ecology and Conservation 22: 93100.CrossRefGoogle Scholar
Costa, MH, Pires, GF (2010) Effects of Amazon and central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. International Journal of Climatology 30: 19701979.CrossRefGoogle Scholar
Costa, MH, Fleck, LC, Cohn, AS, Abrahão, GM, Brando, PM, Coe, MT et al. (2019) Climate risks to Amazon agriculture suggest a rationale to conserve local ecosystems. Frontiers in Ecology and the Environment 17: 584590.CrossRefGoogle Scholar
da Silva, SS, Brown, F, Sampaio, AO, Silva, ALC, dos Santos, NCRS, Lima, AC et al. (2023) Amazon climate extremes: increasing droughts and floods in Brazil’s state of Acre. Perspectives in Ecology and Conservation 21: 311317.CrossRefGoogle Scholar
Ellwanger, JH, Fearnside, PM, Ziliotto, M, Valverde-Villegas, JM, Veiga, ABG, Vieira, GF et al. (2022) Synthesizing the connections between environmental disturbances and zoonotic spillover. Annals of the Brazilian Academy of Sciences 94: e20211530.CrossRefGoogle ScholarPubMed
Ellwanger, JH, Kulmann-Leal, B, Kaminski, VL, Valverde-Villegas, JM, Veiga, BG, Spilki, FR et al. (2020) Beyond diversity loss and climate change: impacts of Amazon deforestation on infectious diseases and public health. Annals of the Brazilian Academy of Sciences 92: e20191375.CrossRefGoogle ScholarPubMed
Escada, MIS, Maurano, LE, da Silva, JHG (2013) Dinâmica do desmatamento na área de influência das usinas hidroelétricas do complexo do rio Madeira, RO. In: JR dos Santos (ed.), XVI Simpósio Brasileiro de Sensoriamento Remoto, Foz do Iguaçu, Brasil 2013 (pp. 7499–7507). São José dos Campos, SP, Brazil: Instituto Nacional de Pesquisas Espaciais (INPE) [www document]. URL http://www.dsr.inpe.br/sbsr2013/files/p0551.pdf Google Scholar
Estrada, A, Garber, PA, Gouveia, S, Fernández-Llamazares, A, Ascensão, F, Fuentes, A et al. (2022) Global importance of Indigenous Peoples, their lands, and knowledge systems for saving the world’s primates from extinction. Science Advances 8: eabn2927.CrossRefGoogle ScholarPubMed
Fahrig, L (2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34: 487515.CrossRefGoogle Scholar
Fahrig, L (2017) Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics 48: 123.CrossRefGoogle Scholar
Fearnside, PM (1987) Deforestation and international economic development projects in Brazilian Amazonia. Conservation Biology 1: 214221.CrossRefGoogle Scholar
Fearnside, PM (1989) Ocupação Humana de Rondônia: Impactos, Limites e Planejamento. Brasília, DF, Brazil: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).Google Scholar
Fearnside, PM (1997) Greenhouse gases from deforestation in Brazilian Amazonia: net committed emissions. Climatic Change 35: 321360.CrossRefGoogle Scholar
Fearnside, PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conservation Biology 19: 680688.CrossRefGoogle Scholar
Fearnside, PM (2017) Deforestation of the Brazilian Amazon. Oxford Research Encyclopedia of Environmental Science. New York, NY, USA: Oxford University Press [www document]. URL https://doi.org/10.1093/acrefore/9780199389414.013.102 CrossRefGoogle Scholar
Fearnside, PM (2018) Challenges for sustainable development in Brazilian Amazonia. Sustainable Development 26: 141149.CrossRefGoogle Scholar
Fearnside, PM (2020) Changing climate in Brazil’s ‘breadbasket’. Frontiers in Ecology and the Environment 18: 486488.CrossRefGoogle Scholar
Fearnside, PM (2022) Amazon environmental services: why Brazil’s Highway BR-319 is so damaging. Ambio 51: 13671370.CrossRefGoogle ScholarPubMed
Fearnside, PM, Cruz, PV (2018) Chainsaw massacre: protected areas in danger in Brazil’s state of Rondônia (commentary). Mongabay, 30 October [www document]. URL https://news.mongabay.com/2018/10/chainsaw-massacre-protected-areas-in-danger-in-brazils-state-of-rondonia-commentary/ Google Scholar
Flores, BM, Montoya, E, Sakschewski, B, Nascimento, N, Staal, A, Betts, RA et al. (2024) Critical transitions in the Amazon forest system. Nature 626: 555564.CrossRefGoogle ScholarPubMed
Fu, R, Yin, L, Li, W, Arias, PA, Dickinson, RE, Huang, L et al. (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences of the United States of America 110: 1811018115.CrossRefGoogle ScholarPubMed
Galetti, M, Alves-Costa, CP, Cazetta, E (2003) Effects of forest fragmentation, anthropogenic edges and fruit colour on the consumption of ornithocoric fruits. Biological Conservation 111: 269273.CrossRefGoogle Scholar
Gatagon-Suruí, F, Oliveira, MA, Goebel, LGA, Ribeiro, TM, Santos, DM, Mittermeier, RA, Rylands, AB (2024) Guia de Primatas do Povo Paiter-Suruí. Editora: Re:wild [www document]. URL https://publicacoes.even3.com.br/book/guia-de-primatas-do-povo-paiter-surui-3640735 CrossRefGoogle Scholar
Godet, L, Devictor, V (2018) What conservation does. Trends in Ecology & Evolution 33: 720730.CrossRefGoogle Scholar
Goebel, LGA, Bogoni, JA, Longo, GR, Palmeirim, AF, Fermiano, EC, da Silva, DJ, dos Santos-Filho M (2025) Multi-faceted decline of vertebrate diversity in an endemism zone of the Brazilian Amazon. Journal for Nature Conservation 84: 126842.CrossRefGoogle Scholar
Gomes, E (2012) História e Geografia de Rondônia. Vilhena, Brazil: Expressa Ltda.Google Scholar
Haddad, NM, Brudvig, LA, Clobert, J, Davies, KF, Gonzalez, A, Holt, RD et al. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1: e1500052.CrossRefGoogle ScholarPubMed
IBGE (Instituto Brasileiro de Geografia e Estatística) (2021a) Bases cartográficas contínuas – 1:250.000 [www document]. URL https://www.ibge.gov.br/geociencias/downloads-geociencias.html?caminho=cartas_e_mapas/bases_cartograficas_continuas/bc250/ Google Scholar
IBGE (Instituto Brasileiro de Geografia e Estatística) (2021b) Terras indígenas: Fundação Nacional dos Povos Indígenas; FUNAI, 2020 [www document]. URL https://www.gov.br/funai/pt-br Google Scholar
IBGE (Instituto Brasileiro de Geografia e Estatística) (2023) Cidades e Estado – Rondônia [www document]. URL https://www.ibge.gov.br/cidades-e-estados/ro.html. Accessed April 2023.Google Scholar
INPE (Instituto Nacional de Pesquisas Espaciais) (2022) PRODES – Projeto de Monitoramento do Desmatamento na Amazônia Legal (Terrabrasilis – Geographic Data Platform [www document]. URL http://terrabrasilis.dpi.inpe.br/ Google Scholar
IPAM (Instituto de Pesquisa Ambiental da Amazônia; Institute of Environmental Research of the Amazon) (2023) IPAM homepage [www document]. URL https://ipam.org.br Google Scholar
Lapola, DM, Pinho, P, Barlow, J, Aragão, LEOC, Berenguer, E, Carmenta, R et al. (2023) The drivers and impacts of Amazon Forest degradation. Science 379: eabp8622.CrossRefGoogle ScholarPubMed
Laurance, WF, Camargo, JLC, Fearnside, PM, Lovejoy, TE, Williamson, GB, Mesquita, RCG et al. (2018) An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews 93: 223247.CrossRefGoogle ScholarPubMed
Laurance, WF, Goosem, M, Laurance, SG (2009) Impacts of roads and linear clearings on tropical forests. Trends in Ecology & Evolution 24: 659669.CrossRefGoogle ScholarPubMed
Laurance, WF, Peletier-Jellema, A, Geenen, B, Koster, H, Verweij, P, Van Dijck, P et al. (2015) Reducing the global environmental impacts of rapid infrastructure expansion. Current Biology 25: R259R262.CrossRefGoogle ScholarPubMed
Leite-Filho, AT, Costa, MH, Fu, R (2020) The southern Amazon rainy season: the role of deforestation and its interactions with large-scale mechanisms. International Journal of Climatology 40: 23282341.CrossRefGoogle Scholar
Leite-Filho, AT, Soares-Filho, BS, Davis, JL, Abrahão, GM, Börner, J (2021) Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nature Communications 12: 2591.CrossRefGoogle ScholarPubMed
Magioli, M, Rios, E, Benchimol, M, Casanova, DC, Ferreira, AS, Rocha, J et al. (2021) The role of protected and unprotected forest remnants for mammal conservation in a megadiverse Neotropical hotspot. Biological Conservation 259: 109173.CrossRefGoogle Scholar
Malcolm, JR (1994) Edge effects in central Amazonian forest fragments. Ecology 75: 24382445.CrossRefGoogle Scholar
Marsh, CJ, Sica, YV, Burgin, CJ, Dorman, WA, Anderson, RC, Mijares, IdT et al. (2022) Expert range maps of global mammal distributions harmonised to three taxonomic authorities. Journal of Biogeography 49: 979992.CrossRefGoogle ScholarPubMed
Melo, FP, Arroyo-Rodríguez, V, Fahrig, L, Martínez-Ramos, M, Tabarelli, M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology & Evolution 28: 462468.CrossRefGoogle ScholarPubMed
MMA (Ministério do Meio Ambiente) (2011) Planos de Ação para a Prevenção e o Controle do Desmatamento. Documento Base: Contexto e Análises [www document]. URL https://antigo.mma.gov.br/epanb/item/616-preven%C3%A7%C3%A3o-e-controle-do-desmatamento-na-amaz%C3%B4nia.html Google Scholar
Moreira, RCS, Maciel, LAP, Fernandes Netto, FL, Vieira, MVC (2022) Análise da política florestal e estratégia de gestão e monitoramento dos ativos florestais no estado de Rondônia. Diálogos [Porto Velho] 6: 115.Google Scholar
Neteler, M, Bowman, MH, Landa, M, Metz, M (2012) GRASS GIS: a multi-purpose open source GIS. Environmental Modelling & Software 31: 124130.CrossRefGoogle Scholar
Noss, RF, Dobson, AP, Baldwin, R, Beier, P, Davis, CR, Dellasala, DA et al. (2012) Bolder thinking for conservation. Conservation Biology 26: 14.CrossRefGoogle ScholarPubMed
Palmeirim, AF, Emer, C, Benchimol, M, Storck-Tonon, D, Bueno, AS, Peres, CA (2022) Emergent properties of species–habitat networks in an insular forest landscape. Science Advances 8: eabm0397.CrossRefGoogle Scholar
Palmeirim, AF, Santos-Filho, M, Peres, CA (2020) Marked decline in forest-dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier. PLoS One 15: e0230209.CrossRefGoogle Scholar
Piontekowski, VJ, Ribeiro, FP, Matricardi, EAT, Junio, IML, Bussinguer, AP, Gatto, A (2019) Modeling deforestation in the state of Rondônia. Floresta e Ambiente 26: e20180441.CrossRefGoogle Scholar
Pires, MM, Benchimol, M, Cruz, LR, Peres, CA (2023) Terrestrial food web complexity in Amazonian forests decays with habitat loss. Current Biology 33: 389396.CrossRefGoogle ScholarPubMed
QGIS Development Team (2023) QGIS Geographic Information System. Open Source Geospatial Foundation Project [www document]. URL https://qgis.org/ Google Scholar
Qin, Y, Xiao, X, Liu, F, Sa e Silva, F, Shimabukuro, Y, Arai, E, Fearnside, PM (2023) Forest conservation in Indigenous territories and protected areas in the Brazilian Amazon. Nature Sustainability 6: 295305.CrossRefGoogle Scholar
R Core Team (2023) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Raven, PH, Gereau, RE, Phillipson, PB, Chatelain, C, Jenkins, CN, Ulloa Ulloa, C (2020) The distribution of biodiversity richness in the tropics. Science Advances 6: eabc6228.CrossRefGoogle ScholarPubMed
Ribeiro, MC, Metzger, JP, Martensen, AC, Ponzoni, FJ, Hirota, MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 11411153.CrossRefGoogle Scholar
Souza, CM Jr, Shimbo, JZ, Rosa, MR, Parente, L, Alencar, AA, Rudorff, BFT et al. (2020) Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat Archive and Earth Engine. Remote Sensing 12: 2735.CrossRefGoogle Scholar
Sze, JS, Childs, DZ, Carrasco, LR, Edwards, DP (2022) Indigenous territories in protected areas have high forest integrity across the tropics. Current Biology 32: 49494956.CrossRefGoogle Scholar
Turner, MG, Gardner, RH (2015) Landscape Ecology in Theory and Practice. New York, NY, USA: Springer.CrossRefGoogle Scholar
Van Moorter, B, Kivimäki, I, Panzacchi, M, Saura, S, Brandão Niebuhr, B et al. (2023) Habitat functionality: integrating environmental and geographic space in niche modeling for conservation planning. Ecology 104: e4105.CrossRefGoogle ScholarPubMed
Vancine, MH, Muylaert, RL, Niebuhr, BB, Oshima, JEDF, Tonetti, V, Bernardo, R et al. (2024) The Atlantic Forest of South America: spatiotemporal dynamics of remaining vegetation and implications for conservation. Biological Conservation 291: 110499.CrossRefGoogle Scholar
West, TA, Fearnside, PM (2021) Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 100: 105072.CrossRefGoogle Scholar
Young, HS, McCauley, DJ, Galetti, M, Dirzo, R (2016) Patterns, causes, and consequences of Anthropocene defaunation. Annual Review of Ecology, Evolution, and Systematics 47: 333358.CrossRefGoogle Scholar
Supplementary material: File

Goebel et al. supplementary material 1

Goebel et al. supplementary material
Download Goebel et al. supplementary material 1(File)
File 398.5 KB
Supplementary material: File

Goebel et al. supplementary material 2

Goebel et al. supplementary material
Download Goebel et al. supplementary material 2(File)
File 16.3 KB
Supplementary material: File

Goebel et al. supplementary material 3

Goebel et al. supplementary material
Download Goebel et al. supplementary material 3(File)
File 16.9 KB
Supplementary material: File

Goebel et al. supplementary material 4

Goebel et al. supplementary material
Download Goebel et al. supplementary material 4(File)
File 38.1 KB
Supplementary material: File

Goebel et al. supplementary material 5

Goebel et al. supplementary material
Download Goebel et al. supplementary material 5(File)
File 29.4 KB