We investigate the scale-by-scale transfers of energy, enstrophy and helicity in homogeneous and isotropic polymeric turbulence using direct numerical simulations. The study relies on the exact scale-by-scale budget equations, derived from the governing model equations, that fully capture the back-reaction of polymers on the fluid dynamics. Polymers act as dynamic sinks and sources and open alternative routes for interscale transfer whose significance is modulated by their elasticity, quantified through the Deborah number (
${\textit{De}}$). Polymers primarily deplete the nonlinear energy cascade at small scales, by attenuating intense forward and inverse transfer events. At sufficiently high
${\textit{De}}$, a polymer-driven flux emerges and dominates at small scales, transferring on average energy from larger to smaller scales, while allowing for localised backscatter. For enstrophy, polymers inhibit the stretching of vorticity, with fluid–polymer interactions becoming the primary enstrophy source at high
${\textit{De}}$. Accordingly, an analysis of the small-scale flow topology reveals that polymers promote two-dimensional straining states and enhance the occurrence of shear and planar extensional flows, while suppressing extreme rotation events. Helicity, injected at large scales, exhibits a transfer mechanism analogous to energy, being dominated by nonlinear dynamics at large scales and by polymer-induced fluxes at small scales. Polymers enhance the breakdown of small-scale mirror symmetry, as indicated by a monotonic increase in relative helicity with
${\textit{De}}$ across all scales.