Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:50:22.715Z Has data issue: false hasContentIssue false

12 - Simulation of Geothermal Systems Using MRST

from Part III - Modeling of New Physical Processes

Published online by Cambridge University Press:  20 November 2021

Knut-Andreas Lie
Affiliation:
SINTEF
Olav Møyner
Affiliation:
SINTEF
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Summary

Geothermal energy is renewable, always on, and available anywhere (at least in principle). Hot underground aquifers are therefore appealing as a source of green energy but also for large-scale energy storage, which is important to buffer the seasonal energetic imbalance associated with the use of renewable energies. The viability of a geothermal exploitation project is determined by a number of factors such as energy efficiency, storage capacity, economical aspects (e.g., drilling and operational costs), and compliance with legal regulations. Such assessments require a detailed characterization of the geology and physical properties of both the aquifer and aquiclude, groundwater chemistry, and flow properties. Proper understanding of these processes depends on accurate and flexible numerical simulation tools. In this chapter, we present geothermal, a module for geothermal simulations of low- to moderate-enthalpy geothermal systems. The module implements the equations for conservation of energy and conservation of mass for water and salt (NaCl), along with pressure-, temperature- and NaCl-dependent viscosity and density and other functionalities specific to geothermal problems. We demonstrate the accuracy of the module by benchmarking it with TOUGH2, a widely used groundwater flow simulator. We also show how geothermal can be used to simulate different geothermal applications.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 4.0 https://creativecommons.org/cclicenses/

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×