Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T22:42:22.324Z Has data issue: false hasContentIssue false

8 - Endogeneity in Nonparametric and Semiparametric Regression Models

Published online by Cambridge University Press:  23 December 2009

Mathias Dewatripont
Affiliation:
Université Libre de Bruxelles
Lars Peter Hansen
Affiliation:
University of Chicago
Stephen J. Turnovsky
Affiliation:
University of Washington
Get access

Summary

INTRODUCTION

The analysis of data with endogenous regressors – that is, observable explanatory variables that are correlated with unobservable error terms – is arguably the main contribution of econometrics to statistical science. Although “endogeneity” can arise from a number of different sources, including mismeasured regressors, sample selection, heterogeneous treatment effects, and correlated random effects in panel data, the term originally arose in the context of “simultaneity,” in which the explanatory variables were, with the dependent variable, determined through a system of equations, so that their correlation with error terms arose from feedback from the dependent to the explanatory variables. Analysis of linear supply-and-demand systems (with normal errors) yielded the familiar rank and order conditions for identification, two- and three-stage estimation methods, and analysis of structural interventions. Although these multistep estimation procedures have been extended to nonlinear parametric models with additive nonnormal errors (e.g., Amemiya, 1974 and Hansen 1982), extensions to nonparametric and semiparametric models have only recently been considered.

The aim of this chapter is to examine the existing literature on estimation of some “nonparametric” models with endogenous explanatory variables, and to compare the different identifying assumptions and estimation approaches for particular models and determine their applicability to others. To maintain a manageable scope for the chapter, we restrict our attention to nonparametric and semiparametric extensions of the usual simultaneous equations models (with endogenous regressors that are continuously distributed). We consider the identification and estimation of the “average structural function” and argue that this parameter is one parameter of central interest in the analysis of semi-parametric and nonparametric models with endogenous regressors.

Type
Chapter
Information
Advances in Economics and Econometrics
Theory and Applications, Eighth World Congress
, pp. 312 - 357
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×