Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T07:22:40.058Z Has data issue: false hasContentIssue false

6 - Integrity Attack Case Study: PCA Detector

from Part II - Causative Attacks on Machine Learning

Published online by Cambridge University Press:  14 March 2019

Anthony D. Joseph
Affiliation:
University of California, Berkeley
Blaine Nelson
Affiliation:
Google
Benjamin I. P. Rubinstein
Affiliation:
University of Melbourne
J. D. Tygar
Affiliation:
University of California, Berkeley
Get access

Summary

Adversaries can use Causative attacks to not only disrupt normal user activity (as we demonstrated in Chapter 5) but also to evade the detector by causing it to have many false negatives through an Integrity attack. In doing so, such adversaries can reduce the odds that their malicious activities are successfully detected. This chapter presents a case study of the subspace anomaly detection methods introduced by Lakhina et al. (2004b) for detecting network-wide anomalies such as denial-of-service (DoS) attacks based on the dimensionality reduction technique commonly known as principal component analysis (PCA) (Pearson 1901). We show that by injecting crafty extraneous noise, or chaff, into the network during training, the PCA-based detector can be poisoned so it is unable to effectively detect a subsequent DoS attack.We also demonstrate defenses against these attacks. Specifically, by replacing PCA with a more robust alternative subspace estimation procedure, we show that the resulting detector is resilient to poisoning and maintains a significantly lower false-positive rate when poisoned.

The PCA-based detector we analyze was first proposed by Lakhina et al. (2004b) as method for identifying volume anomalies in a backbone network. This basic technique led to a variety of extensions of the original method (e.g., Lakhina, Crovella & Diot 2004a, 2005a, 2005b) and to related techniques for addressing the problem of diagnosing large-volume network anomalies (e.g., Brauckhoff, Salamatian, & May 2009; Huang, Nguyen, Garofalakis, Jordan, Joseph, & Taft 2007; Li, Bian, Crovella, Diot, Govindan, Iannaccone, & Lakhina 2006; Ringberg, Soule, Rexford, & Diot 2007; Zhang, Ge, Greenberg, & Roughan 2005).While their subspace-based method is able to successfully detect DoS attacks in the network traffic, to do so it assumes the detector is trained on nonmalicious data (in an unsupervised fashion under the setting of anomaly detection). Instead, we consider an adversary that knows that an ISP is using a subspacebased anomaly detector and attempts to evade it by proactively poisoning the training data.

We consider an adversary whose goal is to circumvent detection by poisoning the training data; i.e., an Integrity goal to increase the detector's false-negative rate, which corresponds to the evasion success rate of the attacker's subsequent DoS attack. When trained on this poisoned data, the detector learns a distorted set of principal components that are unable to effectively discern the desired DoS attacks—a Targeted attack.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×