Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T09:52:17.531Z Has data issue: false hasContentIssue false

36 - Looking back

Published online by Cambridge University Press:  05 June 2012

Peter Smith
Affiliation:
University of Cambridge
Get access

Summary

Let's finish by taking stock one last time. At the end of the last Interlude, we gave a road-map for the final part of the book. So we won't repeat the gist of that detailed local guide to recent chapters; instead, we'll stand further back and give a global overview. And let's concentrate on the relationship between our various proofs of incompleteness. Think of the book, then, as falling into three main parts:

(a) The first part (Chapters 1 to 7), after explaining various key concepts, proves two surprisingly easy incompleteness theorems. Theorem 5.7 tells us that if T is a sound axiomatized theory whose language is sufficiently expressive, then T can't be negation complete. And Theorem 6.2 tells us that we can weaken the soundness condition and require only consistency if we strengthen the other condition (from one about what T can express to one about what it can prove): if T is a consistent axiomatized theory which is sufficiently strong, then T again can't be negation complete.

Here the ideas of being sufficiently expressive/sufficiently strong are defined in terms of expressing/capturing enough effectively decidable numerical properties or relations. So the arguments for our two initial incompleteness theorems depend on a number of natural assumptions about the intuitive idea of effective decidability. And the interest of those theorems depends on the assumption that being sufficiently expressive/sufficiently strong is a plausible desideratum on formalized arithmetics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Looking back
  • Peter Smith, University of Cambridge
  • Book: An Introduction to Gödel's Theorems
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511800962.037
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Looking back
  • Peter Smith, University of Cambridge
  • Book: An Introduction to Gödel's Theorems
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511800962.037
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Looking back
  • Peter Smith, University of Cambridge
  • Book: An Introduction to Gödel's Theorems
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511800962.037
Available formats
×