Published online by Cambridge University Press: 05 June 2012
We now move on from the generalities of the previous chapters, and look at some particular formal arithmetics. In this chapter, we limber up by looking at Baby Arithmetic, and then we start exploring Robinson Arithmetic. Later, in Chapter 10, we'll be introducing Peano Arithmetic, the strongest of our initial range of formal arithmetics.
These theories differ in strength, but they do share one key feature: the theories' deductive apparatus is no richer than familiar first-order logic. So we can quantify, perhaps, over all numbers: but our theories will lack second-order quantifiers, i.e. we can't quantify over all numerical properties.
BA, Baby Arithmetic
We begin with a very simple theory which ‘knows’ about the addition of particular numbers, ‘knows’ its multiplication tables, but can't express general facts about numbers at all (it lacks the whole apparatus of quantification). Hence our label Baby Arithmetic, or BA for short. As with any formal theory, we need to characterize (a) its language, (b) its deductive apparatus, and (c) its axioms.
(a) BA's language is LB = 〈ℒB, IB〉. ℒB's non-logical vocabulary is the same as that of ℒA (Section 4.3): hence there is a single individual constant ‘0’, the one-place function symbol 's’, and the two-place function symbols ‘+’ and ‘×’. So ℒB contains the standard numerals. However, ℒB's logical apparatus is restricted. As we said, it lacks quantifiers and variables.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.