Published online by Cambridge University Press: 05 June 2012
Introduction
20.1.1 In this chapter we will look at one more logic with possible-world semantics: intuitionist logic.
20.1.2 After a brief prolegomenon, we will look at the semantics for this. We will then look at two tableau systems. The first is close to the tableau system for variable domain modal logic of chapter 15. The second is slightly more complicated to formulate, but produces simpler tableaux.
20.1.3 All this without identity, which is thrown into play in the second half of the chapter.
20.1.4 En route, we will also look at some philosophical issues concerning existence, construction and identity.
Existence and Construction
20.2.1 Mathematical Platonists think of mathematical objects as existing in some objective realm, just like (we normally think that) stones and stars do; it is just a realm that is out of causal contact with us – or anything else. As we observed (6.2.5) mathematical intuitionists reject this view.
20.2.2 So what, according to them, does it mean to say that a mathematical object exists? It means that we are able to construct it; that is, that there is some recipe we can follow to produce it. Obviously, the entity constructed is not a physical entity; we may call it a mental (or maybe social) entity. Thus, mathematical objects have no cognition-independent existence.
20.2.3 As we also observed (6.2.6), an intuitionist needs to give the proof conditions for sentences (where a proof is something that can be recognised as such).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.