Published online by Cambridge University Press: 05 June 2012
In expositions of modern logic, the use of some mathematics is unavoidable. The amount of mathematics used in this text is rather minimal, but it may yet throw a reader who is unfamiliar with it. In this section I will explain briefly three bits of mathematics that will help a reader through the text. The first is some simple set-theoretic notation and its meaning. The second is the notion of proof by induction. The third concerns the notion of equivalence relations and equivalence classes. It is not necessary to master the following before starting the book; the material can be consulted if and when required.
Set-theoretic Notation
0.1.1 The text makes use of standard set-theoretic notation from time to time (though never in a very essential way). Here is a brief explanation of it.
0.1.2 A set, X, is a collection of objects. If the set comprises the objects a1, …, an, this may be written as {a1, …, an}. If it is the set of objects satisfying some condition, A(x), then it may be written as {x :A(x)}. a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X means that a is not a member of X.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.