Published online by Cambridge University Press: 11 November 2010
Bimodules have become of increasing importance in the ideal theory of a noetherian ring R, particularly ideal factors I/J where I ⊇ J are ideals of R, and overrings S ⊇ R, viewed as (S, R)-bimodules. To make the notation more convenient in both cases, we study bimodules in general. In this chapter, we investigate the structure of bimodules over noetherian rings, particularly bimodules which are noetherian or artinian on at least one side, and we illustrate the results by indicating a number of applications, particularly to the relationships between the prime ideals of a ring and the prime ideals of a subring. While the latter sections of the chapter are designed to show the reader several contexts in which bimodules have been successfully used, only the first four sections are strictly needed for later chapters of the book.
• NOETHERIAN BIMODULES •
By a “noetherian bimodule” is usually meant a bimodule RAS which not only has the ACC on sub-bimodules, but also is noetherian as a left R-module and as a right S-module. (Some authors mean in addition that R and S are noetherian rings.) We state our results under somewhat more general hypotheses, while thinking mainly of applications to noetherian bimodules.
Our first result, although elementary, is fundamental to the entire development of noetherian bimodules. In particular, as the exercise following indicates, it gives severe restrictions on which modules can appear as one-sided submodules of noetherian bimodules.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.