Published online by Cambridge University Press: 11 November 2010
Krull dimension is a measurement of size of a ring that has an intrinsic importance of its own and is also a useful technical tool in the theory of noetherian rings. We have already discussed in the previous chapter the “classical” Krull dimension, which originated in commutative ring theory and is defined using the prime ideals of a ring. In the noncommutative theory, we need a notion of Krull dimension that does not depend on prime ideals, but which shares many of the important properties of the classical Krull dimension for commutative rings. For instance, we would like a notion of Krull dimension that gives some useful information even for simple rings. This is done by defining a dimension on modules rather than just on rings, which has the advantage that it in some sense replaces considerations involving two-sided ideals with considerations involving only one-sided ideals. The definition now used is due to Rentschler and Gabriel and will be defined in detail in the next section. While at first sight it appears completely unrelated to the classical definition, we shall see that it coincides with the classical Krull dimension on commutative noetherian rings and, in fact, on FBN rings.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.