Book contents
- Frontmatter
- Contents
- Introduction to the Second Edition
- Introduction to the First Edition
- Prologue
- 1 A Few Noetherian Rings
- 2 Skew Polynomial Rings
- 3 Prime Ideals
- 4 Semisimple Modules, Artinian Modules, and Torsionfree Modules
- 5 Injective Hulls
- 6 Semisimple Rings of Fractions
- 7 Modules over Semiprime Goldie Rings
- 8 Bimodules and Affiliated Prime Ideals
- 9 Fully Bounded Rings
- 10 Rings and Modules of Fractions
- 11 Artinian Quotient Rings
- 12 Links Between Prime Ideals
- 13 The Artin-Rees Property
- 14 Rings Satisfying the Second Layer Condition
- 15 Krull Dimension
- 16 Numbers of Generators of Modules
- 17 Transcendental Division Algebras
- Appendix. Some Test Problems for Noetherian Rings
- Bibliography
- Index
3 - Prime Ideals
Published online by Cambridge University Press: 11 November 2010
- Frontmatter
- Contents
- Introduction to the Second Edition
- Introduction to the First Edition
- Prologue
- 1 A Few Noetherian Rings
- 2 Skew Polynomial Rings
- 3 Prime Ideals
- 4 Semisimple Modules, Artinian Modules, and Torsionfree Modules
- 5 Injective Hulls
- 6 Semisimple Rings of Fractions
- 7 Modules over Semiprime Goldie Rings
- 8 Bimodules and Affiliated Prime Ideals
- 9 Fully Bounded Rings
- 10 Rings and Modules of Fractions
- 11 Artinian Quotient Rings
- 12 Links Between Prime Ideals
- 13 The Artin-Rees Property
- 14 Rings Satisfying the Second Layer Condition
- 15 Krull Dimension
- 16 Numbers of Generators of Modules
- 17 Transcendental Division Algebras
- Appendix. Some Test Problems for Noetherian Rings
- Bibliography
- Index
Summary
In trying to understand the ideal theory of a commutative ring, one quickly sees that it is important to first understand the prime ideals. We recall that a proper ideal P in a commutative ring R is prime if, whenever we have two elements a and b of R such that ab ∈ P, it follows that a ∈ P or b ∈ P; equivalently, P is a prime ideal if and only if the factor ring R/P is a domain. (The terminology comes from algebraic number theory, where, for instance, one replaces the prime numbers in ℤ by the prime ideals in a Dedekind domain in order to preserve the unique factorization property.) The importance of prime ideals is perhaps clearest in the setting of algebraic geometry, for if R is the coordinate ring of an affine algebraic variety, the prime ideals of R correspond to irreducible subvarieties.
In the noncommutative setting, we define an integral domain just as we do in the commutative case (as a nonzero ring in which the product of any two nonzero elements is nonzero), but it turns out not to be a good idea to concentrate our attention on ideals P such that R/P is a domain. In fact, many noncommutative rings have no factor rings which are domains.
- Type
- Chapter
- Information
- An Introduction to Noncommutative Noetherian Rings , pp. 47 - 68Publisher: Cambridge University PressPrint publication year: 2004