Published online by Cambridge University Press: 23 February 2011
In Chapters 3 and 4 we have concentrated on the relation between the structure and spectrum of a graph. Here we discuss the connection between structure and a single eigenvalue, and for this the central notion is that of a star complement. In Section 5.1 we define star complements both geometrically and algebraically, and note their basic properties. In Section 5.2 we illustrate a technique for constructing and characterizing graphs by star complements. In Section 5.3 we use star complements to obtain sharp upper bounds on the multiplicity of an eigenvalue different from −1 or 0 in an arbitrary graph, and in a regular graph. In Section 5.4 we describe how star complements can be used to determine the graphs with least eigenvalue −2, and in Section 5.5 we investigate the role of certain star complements in generalized line graphs.
Star complements
Let G be a graph with vertex set V(G) ={1, …, n} and adjacency matrix A. Let {e1, …, en} be the standard orthonormal basis of IRn and let P be the matrix which represents the orthogonal projection of IRn onto the eigenspace ε(μ) of A with respect to {e1, …, en}. Since ε(μ) is spanned by the vectors P ej (j =1, …, n) there exists X ⊆V(G) such that the vectors P ej (j ∈ X) form a basis for ε(μ). Such a subset X of V(G) is called a star set for μ in G.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.