Published online by Cambridge University Press: 05 November 2011
ON THE REDUCTION OF SYSTEMS OF PROPOSITIONS.
1. In the preceding chapters we have determined sufficiently for the most essential purposes the theory of single primary propositions, or, to speak more accurately, of primary propositions expressed by a single equation. And we have established upon that theory an adequate method. We have shown how any element involved in the given system of equations may be eliminated, and the relation which connects the remaining elements deduced in any proposed form, whether of denial, of affirmation, or of the more usual relation of subject and predicate. It remains that we proceed to the consideration of systems of propositions, and institute with respect to them a similar series of investigations. We are to inquire whether it is possible from the equations by which a system of propositions is expressed to eliminate, ad libitum, any number of the symbols involved; to deduce by interpretation of the result the whole of the relations implied among the remaining symbols; and to determine in particular the expression of any single element, or of any interpretable combination of elements, in terms of the other elements, so as to present the conclusion in any admissible form that may be required. These questions will be answered by showing that it is possible to reduce any system of equations, or any of the equations involved in a system, to an equivalent single equation, to which the methods of the previous chapters may be immediately applied. It will be seen also, that in this reduction is involved an important extension of the theory of single propositions, which in the previous discussion of the subject we were compelled to forego.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.