Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T19:42:33.248Z Has data issue: false hasContentIssue false

4 - Discriminant Analysis

from I - Classical Methods

Published online by Cambridge University Press:  05 June 2014

Inge Koch
Affiliation:
University of Adelaide
Get access

Summary

‘That's not a regular rule: you invented it just now.’ ‘It's the oldest rule in the book,’ said the King. ‘Then it ought to be Number One,’ said Alice (Lewis Carroll, Alice's Adventures in Wonderland, 1865).

Introduction

To discriminate means to single out, to recognise and understand differences and to distinguish. Of special interest is discrimination in two-class problems: A tumour is benign or malignant, and the correct diagnosis needs to be obtained. In the finance and credit-risk area, one wants to assess whether a company is likely to go bankrupt in the next few years or whether a client will default on mortgage repayments. To be able to make decisions in these situations, one needs to understand what distinguishes a ‘good’ client from one who is likely to default or go bankrupt.

Discriminant Analysis starts with data for which the classes are known and finds characteristics of the observations that accurately predict each observation's class. One then combines this information into a rule which leads to a partitioning of the observations into disjoint classes. When using Discriminant Analysis for tumour diagnosis, for example, the first step is to determine the variables which best characterise the difference between the benign and malignant groups – based on data for tumours whose status (benign or malignant) is known – and to construct a decision rule based on these variables.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Discriminant Analysis
  • Inge Koch, University of Adelaide
  • Book: Analysis of Multivariate and High-Dimensional Data
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025805.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Discriminant Analysis
  • Inge Koch, University of Adelaide
  • Book: Analysis of Multivariate and High-Dimensional Data
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025805.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Discriminant Analysis
  • Inge Koch, University of Adelaide
  • Book: Analysis of Multivariate and High-Dimensional Data
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025805.005
Available formats
×